Energy-Efficient Data Temporal Consistency Maintenance for IoT Systems

  • Guohui Li
  • Chunyang ZhouEmail author
  • Jianjun Li
  • Bing Guo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11335)


In many Internet of Things systems, it is required to process a good supply of real-time data from the physical world. An important goal when designing such systems is to maintain data temporal consistency while consuming less power. In this paper, we propose, to our knowledge, the first solution to the energy-efficient temporal consistency maintenance problem on Dynamic Voltage and Frequency Scaling (DVFS)-capable multicore platforms. We consider the problem of how to minimize the overall total power consumption on multicore, while the temporal consistency of real-time data objects can be maintained. To end this, firstly, we propose an efficient per-CPU DVFS solution, under which the transaction set can be scheduled to meet the temporal consistency requirement while resulting in significant energy savings. Next, by adopting the proposed unicore DVFS techniques on each core, we further propose new energy-efficient mapping techniques to explore energy savings for multicore platforms. Finally, extensive simulation experiments are conducted and the results demonstrate the proposed solutions outperforms existing methods in terms of energy consumption (up to \(55\%\)).


Internet of Things Real-time data service Energy efficient Multicore platform Algorithms 


  1. 1.
    Aydin, H., Yang, Q.: Energy-aware partitioning for multiprocessor real-time systems. In: Proceedings of IPDPS, pp. 9–pp (2003)Google Scholar
  2. 2.
    Aydin, H., Melhem, R., Mossé, D., Mejía-Alvarez, P.: Power-aware scheduling for periodic real-time tasks. IEEE Trans. Comput. 53(5), 584–600 (2004)CrossRefGoogle Scholar
  3. 3.
    Bambagini, M., Marinoni, M., Aydin, H., Buttazzo, G.: Energy-aware scheduling for real-time systems: a survey. ACM Trans. Embed. Comput. Syst. (TECS) 15(1), 7 (2016)Google Scholar
  4. 4.
    Baruah, S.: Techniques for multiprocessor global schedulability analysis. In: Proceedings of RTSS, pp. 119–128 (2007)Google Scholar
  5. 5.
    Chen, G., Huang, K., Knoll, A.: Energy optimization for real-time multiprocessor system-on-chip with optimal DVFS and DPM combination. ACM Trans. Embed. Comput. Syst. (TECS) 13(3), 111 (2014)Google Scholar
  6. 6.
    Chen, J.J., Chakraborty, S.: Partitioned packing and scheduling for sporadic real-time tasks in identical multiprocessor systems. In: Proceedings of ECRTS, pp. 24–33 (2012)Google Scholar
  7. 7.
    Chen, J.J., Kuo, C.F.: Energy-efficient scheduling for real-time systems on dynamic voltage scaling (DVS) platforms. In: Proceedings of RTCSA, pp. 28–38. IEEE (2007)Google Scholar
  8. 8.
    Han, S., et al.: Online mode switch algorithms for maintaining data freshness in dynamic cyber-physical systems. IEEE Trans. Knowl. Data Eng. 28(3), 756–769 (2016)CrossRefGoogle Scholar
  9. 9.
    Ho, S.J., Kuo, T.W., Mok, A.K.: Similarity-based load adjustment for real-time data-intensive applications. In: Proceedings of RTSS, pp. 144–153 (1997)Google Scholar
  10. 10.
    Kang, K.D.: Reducing deadline misses and power consumption in real-time databases. In: Proceedings of RTSS, pp. 257–268 (2016)Google Scholar
  11. 11.
    Kang, K.D.: Enhancing timeliness and saving power in real-time databases. Real-Time Syst. 30(1), 1–30 (2018)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kato, S., Yamasaki, N.: Semi-partitioned fixed-priority scheduling on multiprocessors. In: Proceedings of RTAS, pp. 23–32 (2009)Google Scholar
  13. 13.
    Kuo, T.W., Ho, S.J.: Similarity-based load adjustment for static real-time transaction systems. IEEE Trans. Comput. 49(2), 112–126 (2000)CrossRefGoogle Scholar
  14. 14.
    Lam, K.Y., Tsang, N.W.H., Han, S., Zhang, W., Ng, J.K.Y., Nath, A.: Activity tracking and monitoring of patients with alzheimer disease. Multimedia Tools Appl. 76(1), 489–521 (2017)CrossRefGoogle Scholar
  15. 15.
    Li, J., Chen, J.J., Xiong, M., Li, G., Wei, W.: Temporal consistency maintenance upon partitioned multiprocessor platforms. IEEE Trans. Comput. 65(5), 1632–1645 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, J., Xiong, M., Lee, V., Shu, L., Li, G.: Workload-efficient deadline and period assignment for maintaining temporal consistency under EDF. IEEE Trans. Comput. 62(6), 1255–1268 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Locke, D.: Real-time databases: real-world requirements. In: Bestavros, A., Lin, K.J., Son, S.H. (eds.) Real-Time Database Systems, pp. 83–91. Springer, Boston (1997). Scholar
  18. 18.
    Narayana, S., Huang, P., Giannopoulou, G., Thiele, L., Prasad, R.V.: Exploring energy saving for mixed-criticality systems on multi-cores. In: Proceedings of RTAS, pp. 1–12 (2016)Google Scholar
  19. 19.
    Quan, G., Niu, L., Hu, X.S., Mochocki, B.: Fixed priority scheduling for reducing overall energy on variable voltage processors. In: Proceedings of RTSS, pp. 309–318 (2004)Google Scholar
  20. 20.
    Ramamritham, K.: Real-time databases. Distrib. Parallel Databases 1(2), 199–226 (1993)CrossRefGoogle Scholar
  21. 21.
    Saifullah, A., Xu, Y., Lu, C., Chen, Y.: End-to-end delay analysis for fixed priority scheduling in WirelessHART networks. In: Proceedings of RTAS, pp. 13–22 (2011)Google Scholar
  22. 22.
    Wu, W., Zhang, J., Luo, A., Cao, J.: Distributed mutual exclusion algorithms for intersection traffic control. IEEE Trans. Parallel Distrib. Syst. 26(1), 65–74 (2015)CrossRefGoogle Scholar
  23. 23.
    Xiong, M., Han, S., Lam, K.Y., Chen, D.: Deferrable scheduling for maintaining real-time data freshness: algorithms, analysis, and results. IEEE Trans. Comput. 57(7), 952–964 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xiong, M., Ramamritham, K.: Deriving deadlines and periods for real-time update transactions. IEEE Trans. Comput. 53(5), 567–583 (2004)CrossRefGoogle Scholar
  25. 25.
    Xiong, M., Wang, Q., Ramamritham, K.: On earliest deadline first scheduling for temporal consistency maintenance. Real-Time Syst. 40(2), 208–237 (2008)CrossRefGoogle Scholar
  26. 26.
    Zhang, F., Chanson, S.T.: Processor voltage scheduling for real-time tasks with non-preemptible sections. In: Proceedings of RTSS, pp. 235–245 (2002)Google Scholar
  27. 27.
    Zhu, D., Aydin, H.: Reliability-aware energy management for periodic real-time tasks. IEEE Trans. Comput. 58(10), 1382–1397 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Guohui Li
    • 1
  • Chunyang Zhou
    • 1
    Email author
  • Jianjun Li
    • 1
  • Bing Guo
    • 2
  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Computer ScienceSichuan UniversityChengduChina

Personalised recommendations