Skip to main content

RFGRU: A Novel Approach for Mobile Application Traffic Identification

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11335))

  • 1686 Accesses

Abstract

Billions of users access the Internet through their mobile devices to get services. Mobile traffic classification has become a hot topic in recent years due to its large volume of traffic data. Many of the studies that have been done show that the key point of mobile traffic identification is to extract signatures. However, the process of signature extraction is usually too complex to perform. In this paper, we propose a novel method RFGRU which is based on the Random Forest and gated recurrent unit, to address the mobile traffic classification problem. Several experiments are performed to verify the effectiveness of RFGRU. The results show that RFGRU delivers a good recognition rate and can accurately identify the traffic of the mobile applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gowsalya, R., Amali, S.M.J.: Naive Bayes based network traffic classification using correlation information. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(3) (2014)

    Google Scholar 

  2. Cisco visual networking index: Global mobile data traffic forecast update 2014–2019. http://goo.gl/Zu8f2r

  3. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 329–344. ACM (2011)

    Google Scholar 

  4. Tongaonkar, A., Dai, S., Nucci, A., Song, D.: Understanding mobile app usage patterns using in-app advertisements. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 63–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36516-4_7

    Chapter  Google Scholar 

  5. Moore, A.W., Zuev, D.: Internet traffic classification using Bayesian analysis techniques. In: ACM SIGMETRICS Performance Evaluation Review, vol. 33, pp. 50–60. ACM (2005)

    Google Scholar 

  6. Auld, T., Moore, A.W., Gull, S.F.: Bayesian neural networks for internet traffic classification. IEEE Trans. Neural Netw. 18(1), 223–239 (2007)

    Article  Google Scholar 

  7. Este, A., Gringoli, F., Salgarelli, L.: Support vector machines for TCP traffic classification. Comput. Netw. 53(14), 2476–2490 (2009)

    Article  Google Scholar 

  8. Lin, P., Xun-yi, Y., Liu, F., Zhen-ming, L.E.I.: A network traffic classification algorithm based on flow statistical characteristics. J. Beijing Univ. Posts Telecommun. 31(2), 15–19 (2008)

    Google Scholar 

  9. Xu, Q., et al.: Automatic generation of mobile app signatures from traffic observations. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1481–1489. IEEE (2015)

    Google Scholar 

  10. Ranjan, G., Tongaonkar, A., Torres, R.: Approximate matching of persistent lexicon using search-engines for classifying mobile app traffic. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)

    Google Scholar 

  11. Yao, H., Ranjan, G., Tongaonkar, A., Liao, Y., Mao, Z.M.: Samples: self adaptive mining of persistent lexical snippets for classifying mobile application traffic. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 439–451. ACM (2015)

    Google Scholar 

  12. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: Networkprofiler: towards automatic fingerprinting of android apps. In: INFOCOM 2013, Proceedings IEEE, pp. 809–817. IEEE (2013)

    Google Scholar 

  13. Yun, X., Wang, Y., Zhang, Y., Zhou, Y.: A semantics-aware approach to the automated network protocol identification. IEEE/ACM Trans. Netw. (TON) 24(1), 583–595 (2016)

    Article  Google Scholar 

  14. Wang, Y., Yun, X., Zhang, Y.: Rethinking robust and accurate application protocol identification: a nonparametric approach. In: 2015 IEEE 23rd International Conference on Network Protocols (ICNP), pp. 134–144. IEEE (2015)

    Google Scholar 

  15. Zhang, Z., Zhang, Z., Lee, P.P., Liu, Y., Xie, G.: Proword: an unsupervised approach to protocol feature word extraction. In: INFOCOM, 2014 Proceedings IEEE, pp. 1393–1401. IEEE (2014)

    Google Scholar 

  16. Hu, L., Li, J., Nie, L., Li, X.L., Shao, C.: What happens next? Future subevent prediction using contextual hierarchical LSTM. In: AAAI, pp. 3450–3456 (2017)

    Google Scholar 

  17. Yang, M., Tu, W., Wang, J., Xu, F., Chen, X.: Attention based LSTM for target dependent sentiment classification. In: AAAI, pp. 5013–5014 (2017)

    Google Scholar 

  18. Stuner, B., Chatelain, C., Paquet, T.: Cascading BLSTM networks for handwritten word recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3416–3421. IEEE (2016)

    Google Scholar 

  19. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  21. Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_16

    Chapter  Google Scholar 

  22. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classification in the dark. In: ACM SIGCOMM Computer Communication Review, vol. 35, pp. 229–240. ACM (2005)

    Google Scholar 

  23. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)

    Article  Google Scholar 

  24. Android monkey tool. http://developer.android.com/tools/help/monkey.html

  25. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61702288), the Natural Science Foundation of Tianjin in China (No. 16JCQNJC00700), the National Information Security Research Plan of China, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Jin, Y., Zhang, J., Wu, H., Zou, X. (2018). RFGRU: A Novel Approach for Mobile Application Traffic Identification. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11335. Springer, Cham. https://doi.org/10.1007/978-3-030-05054-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05054-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05053-5

  • Online ISBN: 978-3-030-05054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics