A Game Theoretic D2D Local Caching System under Heterogeneous Video Preferences and Social Reciprocity

  • Kaichuan ZhaoEmail author
  • Yuezhi Zhou
  • Wenjuan Tang
  • Shuang Li
  • Yaoxue Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11335)


To accommodate the increasing rich multimedia mobile traffics, especially the mobile video traffics, local caching becomes an effective approach to improve the quality of content delivering services in the cellular networks. Mobile devices with large storage capacities and high speed device-to-device (D2D) links become important elements of the local caching system. In this paper, we propose a D2D local caching system under heterogeneous preferences of mobile subscribers (MS), and investigate the utility maximization problem using Stackelberg game solution. In particular, the MSs form different groups, according to their social relationships, and determine the price policies to maximize their utilities, while the video provider (VP) aims to maximize his profits by deciding the rent policies and the budget plan. We investigate the equilibrium of the Stackelberg game in details and propose a water-filling based iterative algorithm to obtain the Stackelberg equilibrium. Extensive results demonstrate efficient performance of the D2D local caching system.


Local caching Device-to-device communication Social relationships Stackelberg game 



This work is supported by the Tsinghua University Initiative Scientific Research Program (Grant No. 20161080066).


  1. 1.
    Baştuǧ, E., Bennis, M., Kountouris, M., Debbah, M.: Cache-enabled small cell networks: modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw. 2015(1), 1–11 (2015)CrossRefGoogle Scholar
  2. 2.
    Baştuǧ, E., Bennis, M., Kountouris, M., Debbah, M.: Cache-enabled small cell networks: Modeling and tradeoffs. EURASIP J. Wirel. Commun. Netw. 2015(1), 41–41 (2015)CrossRefGoogle Scholar
  3. 3.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. John Wiley & Sons, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Cisco, C.V.N.I.: Global mobile data traffic forecast update. 2016–2021 (white paper) (2017)Google Scholar
  6. 6.
    Dehghan, M., et al.: On the complexity of optimal routing and content caching in heterogeneous networks. In: 2015 IEEE Conference on Computer Communications (INFOCOM 2015), pp. 936–944. IEEE, Hong Kong (2015)Google Scholar
  7. 7.
    Fudenberg, D., Tirole, J.: Game Theory, p. 86. MIT press, Cambridge (1991)zbMATHGoogle Scholar
  8. 8.
    Golrezaei, N., Dimakis, A.G., Molisch, A.F.: Scaling behavior for device-to-device communications with distributed caching. IEEE Trans. Inf. Theor. 60(7), 4286–4298 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Golrezaei, N., Shanmugam, K., Dimakis, A.G., Molisch, A.F., Caire, G.: Wireless video content delivery through coded distributed caching. In: 2012 IEEE International Conference on Communications (ICC 2012), pp. 2467–2472. IEEE, Ottawa (2012)Google Scholar
  10. 10.
    Guo, Y., Duan, L., Zhang, R.: Cooperative local caching and file sharing under heterogeneous file preferences. In: 2016 IEEE International Conference on Communications (ICC 2016), pp. 1–6. IEEE, Kuala Lumpur (2016)Google Scholar
  11. 11.
    Guo, Y., Duan, L., Zhang, R.: Cooperative local caching under heterogeneous file preferences. IEEE Trans. Commun. 65(1), 444–457 (2017)Google Scholar
  12. 12.
    Janis, P., Koivunen, V., Ribeiro, C., Korhonen, J., Doppler, K., Hugl, K.: Interference-aware resource allocation for device-to-device radio underlaying cellular networks. In: VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, pp. 1–5. IEEE, Barcelona (2009)Google Scholar
  13. 13.
    Ji, M., Caire, G., Molisch, A.F.: The throughput-outage tradeoff of wireless one-hop caching networks. IEEE Trans. Inf. Theor. 61(12), 6833–6859 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, J., Sun, J., Qian, Y., Shu, F., Xiao, M., Xiang, W.: A commercial video-caching system for small-cell cellular networks using game theory. IEEE Access 4, 7519–7531 (2016)CrossRefGoogle Scholar
  15. 15.
    Li, Y., Su, G., Wu, D.O., Jin, D., Su, L., Zeng, L.: The impact of node selfishness on multicasting in delay tolerant networks. IEEE Trans. Veh. Technol. 60(5), 2224–2238 (2011)CrossRefGoogle Scholar
  16. 16.
    Liu, T., Li, J., Shu, F., Tao, M., Chen, W., Han, Z.: Design of contract-based trading mechanism for a small-cell caching system. IEEE Trans. Wireless Commun. 16(10), 6602–6617 (2017)CrossRefGoogle Scholar
  17. 17.
    Malak, D., AI-Shalash, M.: Optimal caching for device-to-device content distribution in 5G networks. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp. 863–868. IEEE, Austin (2014)Google Scholar
  18. 18.
    Malak, D., Al-Shalash, M., Andrews, J.G.: Optimizing content caching to maximize the density of successful receptions in device-to-device networking. IEEE Trans. Commun. 64(10), 4365–4380 (2016)Google Scholar
  19. 19.
    Pan, Y., Pan, C., Zhu, H., Ahmed, Q.Z., Chen, M., Wang, J.: Content offloading via D2D communications based on user interests and sharing willingness. In: 2017 IEEE International Conference on Communications (ICC 2017), pp. 1–6. IEEE, Paris (2017)Google Scholar
  20. 20.
    Pan, Y., Pan, C., Zhu, H., Ahmed, Q.Z., Chen, M., Wang, J.: On consideration of content preference and sharing willingness in D2D assisted offloading. IEEE J. Sel. Areas Commun. 35(4), 978–993 (2017)Google Scholar
  21. 21.
    Poularakis, K., Iosifidis, G., Tassiulas, L.: A framework for mobile data offloading to leased cache-endowed small cell networks. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (MASS 2014), pp. 327–335. IEEE, Philadelphia (2014)Google Scholar
  22. 22.
    Sciancalepore, V., Giustiniano, D., Banchs, A., Hossmann-Picu, A.: Offloading cellular traffic through opportunistic communications: analysis and optimization. IEEE J. Sel. Areas Commun. 34(1), 122–137 (2016)CrossRefGoogle Scholar
  23. 23.
    Shanmugam, K., Golrezaei, N., Dimakis, A.G., Molisch, A.F., Caire, G.: Femtocaching: wireless content delivery through distributed caching helpers. IEEE Trans. Inf. Theor. 59(12), 8402–8413 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, K., Yu, F.R., Li, H.: Information-centric virtualized cellular networks with device-to-device communications. IEEE Trans. Veh. Technol. 65(11), 9319–9329 (2016)CrossRefGoogle Scholar
  25. 25.
    Wang, R., Zhang, J., Song, S.H., Letaief, K.B.: Mobility-aware caching in D2D networks. IEEE Trans. Wireless Commun. 16(8), 5001–5015 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhang, N., Cheng, N., Lu, N., Zhang, X., Mark, J.W., Shen, X.: Partner selection and incentive mechanism for physical layer security. IEEE Trans. Wireless Commun. 14(8), 4265–4276 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhao, K., Zhang, S., Zhang, N., Zhou, Y., Zhang, Y., Shen, X.: Incentive mechanism for cached-enabled small cell sharing: a stackelberg game approach. In: 2017 IEEE Global Communications Conference (GLOBECOM 2017), pp. 1–6. IEEE, Singapore (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kaichuan Zhao
    • 1
    Email author
  • Yuezhi Zhou
    • 1
  • Wenjuan Tang
    • 2
  • Shuang Li
    • 1
  • Yaoxue Zhang
    • 1
  1. 1.Beijing National Research Center for Information Science and Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.Department of Information Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations