Skip to main content

Parallel Statistical and Machine Learning Methods for Estimation of Physical Load

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11334))

Abstract

Several statistical and machine learning methods are proposed to estimate the type and intensity of physical load and accumulated fatigue. They are based on the statistical analysis of accumulated and moving window data subsets with construction of a kurtosis-skewness diagram. This approach was applied to the data gathered by the wearable heart monitor for various types and levels of physical activities, and for people with various physical conditions. The different levels of physical activities, loads, and fitness can be distinguished from the kurtosis-skewness diagram, and their evolution can be monitored. Several metrics for estimation of the instant effect and accumulated effect (physical fatigue) of physical loads were proposed. The data and results presented allow to extend application of these methods for modeling and characterization of complex human activity patterns, for example, to estimate the actual and accumulated physical load and fatigue, model the potential dangerous development, and give cautions and advice in real time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumari, P., Mathew, L., Syal, P.: Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 90, 298–307 (2017)

    Article  Google Scholar 

  2. Koydemir, H.C., Ozcan, A.: Wearable and implantable sensors for biomedical applications. Ann. Rev. Anal. Chem. 11 (2018) https://doi.org/10.1146/annurev-anchem-061417-125956

  3. Faust, O., Hagiwara, Y., Hong, T.J., Lih, O.S., Acharya, U.R.: Deep learning for healthcare applications based on physiological signals: a review. Comput. Methods Programs Biomed. 161, 1–13 (2018)

    Article  Google Scholar 

  4. Mohanavelu, K., Lamshe, R., Poonguzhali, S., Adalarasu, K., Jagannath, M.: Assessment of human fatigue during physical performance using physiological signals: a review. Biomed. Pharmacol. J. 10(4), 1887–1896 (2017)

    Article  Google Scholar 

  5. Edward, C.W., Nemeroff, C.B. (eds.): The Concise Corsini Encyclopedia of Psychology and Behavioral Science. Wiley, Hoboken (2004)

    Google Scholar 

  6. Gordienko, Y., et al.: Augmented coaching ecosystem for non-obtrusive adaptive personalized elderly care on the basis of Cloud-Fog-Dew computing paradigm. In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 359–364. IEEE, Opatija (2017)

    Google Scholar 

  7. Banaee, H., Ahmed, M.U., Loutfi, A.: Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13(12), 17472–17500 (2013)

    Article  Google Scholar 

  8. Bunn, J.A., Navalta, J.W., Fountaine, C.J., Reece, J.D.: Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int. J. Exerc. Sci. 11(7), 503 (2018)

    Google Scholar 

  9. Amft, O., Van Laerhoven, K.: What will we wear after smartphones? IEEE Pervasive Comput. 16(4), 80–85 (2017)

    Article  Google Scholar 

  10. Gang, P., et al.: User-driven intelligent interface on the basis of multimodal augmented reality and brain-computer interaction for people with functional disabilities. Future of Information and Communications Conference (FICC), Singapore. arXiv preprint arXiv:1704.05915 (2017)

  11. Du, L.H., Liu, W., Zheng, W.L., Lu, B.L.: Detecting driving fatigue with multimodal deep learning. In: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 74–77. IEEE (2017)

    Google Scholar 

  12. Lopez, M.B., del-Blanco, C.R., Garcia, N.: Detecting exercise-induced fatigue using thermal imaging and deep learning. In: 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2017)

    Google Scholar 

  13. Gordienko, Y., et al.: Deep learning for fatigue estimation on the basis of multimodal human-machine interactions. XXIX IUPAP Conference in Computational Physics (CCP2017), Paris, France. arXiv preprint arXiv:1801.06048 (2017)

  14. Hajinoroozi, M., Zhang, J. M., Huang, Y.: Driver’s fatigue prediction by deep covariance learning from EEG. In: 2017 International Conference on Systems, Man, and Cybernetics (SMC), pp. 240–245. IEEE (2017)

    Google Scholar 

  15. Togo, F., Takahashi, M.: Heart rate variability in occupational health-a systematic review. Ind. Health 47(6), 589–602 (2009)

    Article  Google Scholar 

  16. Aubert, A.E., Seps, B., Beckers, F.: Heart rate variability in athletes. Sports Med. 33(12), 889–919 (2003)

    Article  Google Scholar 

  17. Schmitt, L., et al.: Fatigue shifts and scatters heart rate variability in elite endurance athletes. PLoS ONE 8(8), e71588 (2013)

    Article  Google Scholar 

  18. Pichot, V., et al.: Relation between heart rate variability and training load in middle-distance runners. Med. Sci. Sports Exerc. 32(10), 1729–1736 (2000)

    Article  Google Scholar 

  19. Gonzalez, K., Sasangohar, F., Mehta, R.K., Lawley, M., Erraguntla, M.: Measuring fatigue through heart rate variability and activity recognition: a scoping literature review of machine learning techniques. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 61, no. 1, pp. 1748–1752. SAGE Publications, Los Angeles (2017)

    Google Scholar 

  20. Morgan, S.J., Mora, J.A.M.: Effect of heart rate variability biofeedback on sport performance, a systematic review. Appl. Psychophysiol. Biofeedback 42(3), 235–245 (2017)

    Article  Google Scholar 

  21. Yang, C.C., Hsu, Y.L.: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)

    Article  Google Scholar 

  22. Evenson, K.R., Goto, M.M., Furberg, R.D.: Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 12(1), 159 (2015)

    Article  Google Scholar 

  23. Lin, C.T., et al.: Review of wireless and wearable electroencephalogram systems and brain-computer interfaces–a mini-review. Gerontology 56(1), 112–119 (2010)

    Article  Google Scholar 

  24. Cramer, H.: Mathematical Methods of Statistics, vol. 9. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  25. Delignette-Muller, M.L., Pouillot, R., Denis, J.-B., Dutang, C.: fitdistrplus package for R (2012)

    Google Scholar 

  26. Cullen, A., Frey, H.: Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs. Springer, Heidelberg (1999)

    Google Scholar 

  27. Gordienko, Y.G.: Generalized model of migration-driven aggregate growth–asymptotic distributions, power laws and apparent fractality. Int. J. Mod. Phys. B 26(01), 1250010 (2012)

    Article  Google Scholar 

  28. Ma, X., Xu, F.: Peak factor estimation of non-Gaussian wind pressure on high-rise buildings. Struct. Des. Tall Spec. Build. 26(17), e1386 (2017)

    Article  Google Scholar 

  29. Gordienko, Y.G.: Molecular dynamics simulation of defect substructure evolution and mechanisms of plastic deformation in aluminium nanocrystals. Metallofiz. Noveishie Tekhnol. 33(9), 1217–1247 (2011)

    Google Scholar 

  30. Ketchantang, W., Derrode, S., Martin, L., Bourennane, S.: Pearson-based mixture model for color object tracking. Mach. Vis. Appl. 19(5–6), 457–466 (2008)

    Article  Google Scholar 

  31. Tison, C., Nicolas, J.M., Tupin, F., Maître, H.: A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2046–2057 (2004)

    Article  Google Scholar 

  32. Sornette, D., Zhou, W.X.: Predictability of large future changes in major financial indices. Int. J. Forecast. 22(1), 153–168 (2006)

    Article  Google Scholar 

  33. Anastasiadis, A.D., Magoulas, G.D., Vrahatis, M.N.: New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 64, 253–270 (2005)

    Article  Google Scholar 

  34. Intrator O., Intrator N.: Using neural nets for interpretation of nonlinear models. In: Proceedings of the Statistical Computing Section, pp. 244–249. American Statistical Society (eds.), San Francisco (1993)

    Google Scholar 

  35. Beck, M.W.: Visualizing neural networks. https://github.com/fawda123. Accessed 03 May 2018

  36. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  37. Gordienko, N., Lodygensky, O., Fedak, G., Gordienko, Yu.: Synergy of volunteer measurements and volunteer computing for effective data collecting, processing, simulating and analyzing on a worldwide scale, In: Proceedings of the 38th International Convention on Inf. and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 193–198. IEEE, Opatija (2015)

    Google Scholar 

  38. Chen, Y., Wang, Z.Y., Yuan, G., Huang, L.: An overview of online based platforms for sharing and analyzing electrophysiology data from big data perspective. WIREs Data Min. Knowl. Discov. 7(4), e1206 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

The work was partially supported by Ukraine-France Collaboration Project (Programme PHC DNIPRO) (http://www.campusfrance.org/fr/dnipro) and by Huizhou Science and Technology Bureau and Huizhou University (Huizhou, P.R.China) in the framework of Platform Construction for China-Ukraine Hi-Tech Park Project # 2014C050012001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Gordienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stirenko, S. et al. (2018). Parallel Statistical and Machine Learning Methods for Estimation of Physical Load. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11334. Springer, Cham. https://doi.org/10.1007/978-3-030-05051-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05051-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05050-4

  • Online ISBN: 978-3-030-05051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics