Adaptive Data Sampling Mechanism for Process Object

  • Yongzheng Lin
  • Hong LiuEmail author
  • Zhenxiang Chen
  • Kun Zhang
  • Kun Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11334)


Process object is the abstraction of process. In process object, there are different type of entities and associations. The entities vary dependent on other entities. The performance and evolution of process object are affected by the association between entities. These changes could be reflected in the data collected from the process objects. These data from process object could be regard as big data stream. In the context of big data, how to find appropriate data for process object is a challenge. The data sampling should reflect the performance change of process object, and should be adaptive to the current underlying distribution of data in data stream. For finding appropriate data in big data stream to model process object, an adaptive data sampling mechanism is proposed in this paper. Experiments demonstrate the effectiveness of the proposed adaptive data sampling mechanism for process object.


Process object Data sampling Big data Data stream Clustering Stream processing 



This work was supported by the National Natural Science Foundation of China (No. 61472232), Natural Science Foundation of Shandong Province of China (No. ZR2017BF016), and the Science and Technology Program of University of Jinan (No. XKY1623).


  1. 1.
    de Andrade Silva, J., Hruschka, E.R., Gama, J.: An evolutionary algorithm for clustering data streams with a variable number of clusters. Expert Syst. Appl. 67, 228–238 (2017). Scholar
  2. 2.
    Bodyanskiy, Y.V., Tyshchenko, O.K., Kopaliani, D.S.: An evolving connectionist system for data stream fuzzy clustering and its online learning. Neurocomputing 262, 41–56 (2017)CrossRefGoogle Scholar
  3. 3.
    Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017).
  4. 4.
    Du, T., Qu, S., Hua, Z.: A novel timing series calculation algorithm based on statistical extremum for process object. In: 9th International Conference on Computer and Automation Engineering, ICCAE 2017, Sydney, Australia, 18–21 February 2017, pp. 94–98 (2017)Google Scholar
  5. 5.
    Duda, P., Jaworski, M., Rutkowski, L.: On ensemble components selection in data streams scenario with reoccurring concept-drift. In: 2017 IEEE Symposium Series on Computational Intelligence, SSCI, pp. 1–7. IEEE (2017)Google Scholar
  6. 6.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)CrossRefGoogle Scholar
  7. 7.
    Gong, S., Zhang, Y., Yu, G.: Clustering stream data by exploring the evolution of density mountain. arXiv preprint arXiv:1710.00867 (2017)
  8. 8.
    Hua, Z., Du, T., Qu, S., Mou, G.: A data stream clustering algorithm based on density and extended grid. In: Huang, D.-S., Jo, K.-H., Figueroa-García, J.C. (eds.) ICIC 2017. LNCS, vol. 10362, pp. 689–699. Springer, Cham (2017). Scholar
  9. 9.
    Hyde, R., Angelov, P., MacKenzie, A.: Fully online clustering of evolving data streams into arbitrarily shaped clusters. Inf. Sci. 382, 96–114 (2017)CrossRefGoogle Scholar
  10. 10.
    Liang, X., et al.: Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC and winter heating. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 471(2182) (2015).
  11. 11.
    Pears, R., Sakthithasan, S., Koh, Y.S.: Detecting concept change in dynamic data streams. Mach. Learn. 97(3), 259–293 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Puschmann, D., Barnaghi, P., Tafazolli, R.: Adaptive clustering for dynamic IoT data streams. IEEE Internet Things J. 4(1), 64–74 (2017)Google Scholar
  13. 13.
    Ross, G.J., Tasoulis, D.K., Adams, N.M.: Nonparametric monitoring of data streams for changes in location and scale. Technometrics 53(4), 379–389 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sethi, T.S., Kantardzic, M.: Handling adversarial concept drift in streaming data. Expert Syst. Appl. 97, 18–40 (2018)CrossRefGoogle Scholar
  15. 15.
    Sidhu, P., Bhatia, M.: Online approach to handle concept drifting data streams using diversity. Int. Arab J. Inf. Technol. (IAJIT) 14(3), 293–299 (2017)Google Scholar
  16. 16.
    Song, Q., Guo, Q., Wang, K., Du, T., Qu, S., Zhang, Y.: A scheme for mining state association rules of process object based on big data. J. Comput. Commun. 2(14), 17–24 (2014)CrossRefGoogle Scholar
  17. 17.
    Tennant, M., Stahl, F., Rana, O., Gomes, J.B.: Scalable real-time classification of data streams with concept drift. Future Gener. Comput. Syst. 75, 187–199 (2017)CrossRefGoogle Scholar
  18. 18.
    Wang, L.Y., Park, C., Yeon, K., Choi, H.: Tracking concept drift using a constrained penalized regression combiner. Comput. Stat. Data Anal. 108, 52–69 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yarlagadda, A., Jonnalagedda, M., Munaga, K.: Clustering based on correlation fractal dimension over an evolving data stream. Int. Arab J. Inf. Technol. 15(1), 1–9 (2018)Google Scholar
  20. 20.
    Zhu, T., Du, T., Qu, S., Zhu, L.: A novel timing calculation algorithm based on statistical extremum for the time series of process object. Hans J. Data Min. 6(4), 179–191 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringShandong Normal UniversityJinanChina
  2. 2.Shandong Provincial Key Laboratory for Novel Distributed Computer Software TechnologyJinanChina
  3. 3.School of Information Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations