Skip to main content

Pre-harvest Approaches to Improve Poultry Meat Safety

  • Chapter
  • First Online:

Part of the book series: Food Microbiology and Food Safety ((PRACT))

Abstract

Salmonella and Campylobacter have been responsible for numerous foodborne outbreaks and are often associated with the consumption of poultry meat and meat products. Given the significant public health impact associated with these zoonotic pathogens, it is critical to implement programs aimed at reducing pathogen prevalence along the poultry production continuum. Pre-harvest food safety in broiler production utilizes a methodical approach to control enteric pathogens in breeder flocks, hatchlings, chicks, and market-age birds. This chapter discusses the different intervention strategies that can be applied at the primary production environment to control the introduction, propagation, and dissemination of Salmonella and Campylobacter in broiler chicken production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alali, W. Q., & Hofacre, C. L. (2016). Preharvest food safety in broiler chicken production. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.PFS-0002-2014

  • Allain, V., Chemaly, M., Laisney, M. J., Rouxel, S., Quesne, S., & Le Bouquin, S. (2014). Prevalence of and risk factors for Campylobacter colonisation in broiler flocks at the end of the rearing period in France. British Poultry Science, 55, 452–459.

    Google Scholar 

  • Anderson, P., Stanley, V. C., Grace, B., Taylor, O., Hume, M. M., & Sefton, A. E. (2005). Use of BioMos as a pre-harvest treatment in the control of Campylobacter in broiler chicks. In Nutritional biotechnology in the feed and food industries, Proceedings of the 21st Annual Symposium (Suppl 1), Lexington, Kentucky, USA (p. 63).

    Google Scholar 

  • Andreatti Filho, R., Higgins, J., Higgins, S., Gaona, G., Wolfenden, A., Tellez, G., et al. (2007). Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo. Poultry Science, 86, 1904–1909.

    Google Scholar 

  • Arsi, K., Donoghue, A., Venkitanarayanan, K., Kollanoor-Johny, A., Fanatico, A., Blore, P., et al. (2014). The efficacy of the natural plant extracts, thymol and carvacrol against Campylobacter colonization in broiler chickens. Journal of Food Safety, 34, 321–325.

    Google Scholar 

  • Arsi, K., Donoghue, A. M., Woo-Ming, A., Blore, P. J., & Donoghue, D. J. (2015). Intracloacal inoculation, an effective screening method for determining the efficacy of probiotic bacterial isolates against Campylobacter colonization in broiler chickens. Journal of Food Protection, 78, 209–213.

    Google Scholar 

  • Audisio, M. C., Oliver, G., & Apella, M. C. (2000). Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella Pullorum. Journal of Food Protection, 63, 1333–1337.

    Google Scholar 

  • Baffoni, L., Gaggia, F., Di Gioia, D., Santini, C., Mogna, L., & Biavati, B. (2012). A Bifidobacterium-based synbiotic product to reduce the transmission of C. jejuni along the poultry food chain. International Journal of Food Microbiology, 157, 156–161.

    Google Scholar 

  • Baffoni, L., Gaggia, F., Garofolo, G., Di Serafino, G., Buglione, E., Di Giannatale, E., et al. (2017). Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration. International Journal of Food Microbiology, 251, 41–47.

    Google Scholar 

  • Bailey, J. S. (1988). Integrated colonization control of Salmonella in poultry. Poultry Science, 67, 928–932.

    Google Scholar 

  • Bailey, J. S., Blankenship, L. C., & Cox, N. A. (1991). Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poultry Science, 70, 2433–2438.

    Google Scholar 

  • Bailey, J. S., Stern, N. J., Fedorka-Cray, P., Craven, S. E., Cox, N. A., Cosby, D. E., et al. (2001). Sources and movement of Salmonella through integrated poultry operations: A multistate epidemiological investigation. Journal of Food Protection, 64, 1690–1697.

    Google Scholar 

  • Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils--a review. Food and Chemical Toxicology, 46, 446–475.

    Google Scholar 

  • Bardina, C., Spricigo, D. A., Cortes, P., & Llagostera, M. (2012). Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Applied and Environmental Microbiology, 78, 6600–6607.

    Google Scholar 

  • Barnhart, E. T., Caldwell, D. J., Crouch, M. C., Byrd, J. A., Corrier, D. E., & Hargis, B. M. (1999). Effect of lactose administration in drinking water prior to and during feed withdrawal on Salmonella recovery from broiler crops and ceca. Poultry Science, 78, 211–214.

    Google Scholar 

  • Ben Lagha, A., Haas, B., Gottschalk, M., & Grenier, D. (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 48, 22.

    Google Scholar 

  • Berge, A. C., & Wierup, M. (2012). Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal, 6, 557–564.

    Google Scholar 

  • Berry, E. D., & Wells, J. E. (2016). Reducing foodborne pathogen persistence and transmission in animal production environments: Challenges and opportunities. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.PFS-0006-2014

  • Bhatia, T. R., & McNabb, G. D. (1980). Dissemination of Salmonella in broiler-chicken operations. Avian Diseases, 24, 616–624.

    Google Scholar 

  • Bhatia, T. R., McNabb, G. D., Wyman, H., & Nayar, G. P. (1979). Salmonella isolation from litter as an indicator of flock infection and carcass contamination. Avian Diseases, 23, 838–847.

    Google Scholar 

  • Bigwood, T., Hudson, J. A., & Billington, C. (2009). Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiology Letters, 291, 59–64.

    Google Scholar 

  • Blankenship, L., Bailey, J., Cox, N., Stern, N., Brewer, R., & Williams, O. (1993). Two-step mucosal competitive exclusion flora treatment to diminish salmonellae in commercial broiler chickens. Poultry Science, 72, 1667–1672.

    Google Scholar 

  • Boxall, N. S., Perkins, N. R., Marks, D., Jones, B., Fenwick, S. G., & Davies, P. R. (2003). Free available chlorine in commercial broiler chicken drinking water in New Zealand. Journal of Food Protection, 66, 2164–2167.

    Google Scholar 

  • Byrd, J. A., Corrier, D. E., Hume, M. E., Bailey, R. H., Stanker, L. H., & Hargis, B. M. (1998). Effect of feed withdrawal on Campylobacter in the crops of market-age broiler chickens. Avian Diseases, 42, 802–806.

    Google Scholar 

  • Byrd, J. A., Hargis, B. M., Caldwell, D. J., Bailey, R. H., Herron, K. L., McReynolds, J. L., et al. (2001). Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on Salmonella and Campylobacter contamination of broilers. Poultry Science, 80, 278–283.

    Google Scholar 

  • Carter, A. J., Adams, M. R., Woodward, M. J., & La Ragione, R. M. (2009). Control strategies for Salmonella colonization of poultry: The probiotic perspective. Food Science and Technology, 5, 103–115.

    Google Scholar 

  • Carvalho, C. M., Gannon, B. W., Halfhide, D. E., Santos, S. B., Hayes, C. M., Roe, J. M., et al. (2010). The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiology, 10, 232.

    Google Scholar 

  • Cean, A., Stef, L., Simiz, E., Julean, C., Dumitrescu, G., Vasile, A., et al. (2015). Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry. Foodborne Pathogens and Disease, 12, 122–130.

    Google Scholar 

  • Chaveerach, P., Keuzenkamp, D. A., Urlings, H. A., Lipman, L. J., & van Knapen, F. (2002). In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed. Poultry Science, 81, 621–628.

    Google Scholar 

  • Chiang, H. I., Swaggerty, C. L., Kogut, M. H., Dowd, S. E., Li, X., Pevzner, I. Y., et al. (2008). Gene expression profiling in chicken heterophils with Salmonella Enteritidis stimulation using a chicken 44 K Agilent microarray. BMC Genomics, 9, 526.

    Google Scholar 

  • Choi, K., Namkung, H., & Paik, I. (1994). Effects of dietary fructooligosaccharides on the suppression of intestinal colonization of Salmonella Typhimurium in broiler chickens. Korean Journal of Animal Science (Korea Republic), 36, 271–284.

    Google Scholar 

  • Clifton-Hadley, F., Breslin, M., Venables, L., Sprigings, K., Cooles, S., Houghton, S., et al. (2002). A laboratory study of an inactivated bivalent iron restricted Salmonella enterica serovars Enteritidis and Typhimurium dual vaccine against Typhimurium challenge in chickens. Veterinary Microbiology, 89, 167–179.

    Google Scholar 

  • Collins, M. D., & Gibson, G. R. (1999). Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. The American Journal of Clinical Nutrition, 69, 1052S–1057S.

    Google Scholar 

  • Cooper, G. L., Venables, L. M., Woodward, M. J., & Hormaeche, C. E. (1994). Vaccination of chickens with strain CVL30, a genetically defined Salmonella Enteritidis aroA live oral vaccine candidate. Infection and Immunity, 62, 4747–4754.

    Google Scholar 

  • Corrier, D. E., Hinton Jr., A., Ziprin, R. L., & DeLoach, J. R. (1990). Effect of dietary lactose on Salmonella colonization of market-age broiler chickens. Avian Diseases, 34, 668–676.

    Google Scholar 

  • Corry, J., Allen, V., Hudson, W., Breslin, M., & Davies, R. (2002). Sources of Salmonella on broiler carcasses during transportation and processing: Modes of contamination and methods of control. Journal of Applied Microbiology, 92, 424–432.

    Google Scholar 

  • Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.

    Google Scholar 

  • Cox, J. M., & Pavic, A. (2010). Advances in enteropathogen control in poultry production. Journal of Applied Microbiology, 108, 745–755.

    Google Scholar 

  • Cox, N. A., Berrang, M. E., & Cason, J. A. (2000). Salmonella penetration of egg shells and proliferation in broiler hatching eggs--a review. Poultry Science, 79, 1571–1574.

    Google Scholar 

  • Cox, N. A., Richardson, L. J., Maurer, J. J., Berrang, M. E., Fedorka-Cray, P. J., Buhr, R. J., et al. (2012). Evidence for horizontal and vertical transmission in Campylobacter passage from hen to her progeny. Journal of Food Protection, 75, 1896–1902.

    Google Scholar 

  • Darre, M., Kollanoor-Johny, A., Venkitanarayanan, K., & Upadhyaya, I. (2014). Practical implications of plant-derived antimicrobials in poultry diets for the control of Salmonella Enteritidis. Journal of Applied Poultry Research, 23, 340–344.

    Google Scholar 

  • De Buck, J., Van Immerseel, F., Haesebrouck, F., & Ducatelle, R. (2005). Protection of laying hens against Salmonella Enteritidis by immunization with type 1 fimbriae. Veterinary Microbiology, 105, 93–101.

    Google Scholar 

  • DeLoach, J. R., Oyofo, B. A., Corrier, D. E., Kubena, L. F., Ziprin, R. L., & Norman, J. O. (1990). Reduction of Salmonella Typhimurium concentration in broiler chickens by milk or whey. Avian Diseases, 34, 389–392.

    Google Scholar 

  • Desin, T. S., Koster, W., & Potter, A. A. (2013). Salmonella vaccines in poultry: Past, present and future. Expert Review of Vaccines, 12, 87–96.

    Google Scholar 

  • Diaz-Sanchez, S., D’Souza, D., Biswas, D., & Hanning, I. (2015). Botanical alternatives to antibiotics for use in organic poultry production. Poultry Science, 94, 1419–1430.

    Google Scholar 

  • Doyle, M. P., & Erickson, M. C. (2012). Opportunities for mitigating pathogen contamination during on-farm food production. International Journal of Food Microbiology, 152, 54–74.

    Google Scholar 

  • Durant, J. A., Corrier, D. E., & Ricke, S. C. (2000). Short-chain volatile fatty acids modulate the expression of the hilA and invF genes of Salmonella Typhimurium. Journal of Food Protection, 63, 573–578.

    Google Scholar 

  • Epps, S. V., Petrujkic, B. T., Sedej, I., Krueger, N. A., Harvey, R. B., Beier, R. C., et al. (2015). Comparison of anti-Campylobacter activity of free thymol and thymol-beta-D-glucopyranoside in absence or presence of beta-glycoside-hydrolysing gut bacteria. Food Chemistry, 173, 92–98.

    Google Scholar 

  • Evans, S. J., & Sayers, A. R. (2000). A longitudinal study of Campylobacter infection of broiler flocks in Great Britain. Preventive Veterinary Medicine, 46, 209–223.

    Google Scholar 

  • Fanelli, A., Agazzi, A., Alborali, G. L., Pilotto, A., Bontempo, V., Dell'Orto, V., et al. (2015). Prevalence reduction of pathogens in poultry fed with Saccharomyces cerevisiae. Biotechnologie, Agronomie, Société et Environnement, 19, 3.

    Google Scholar 

  • Feberwee, A., de Vries, T. S., Hartman, E. G., de Wit, J. J., Elbers, A. R., & de Jong, W. A. (2001). Vaccination against Salmonella Enteritidis in Dutch commercial layer flocks with a vaccine based on a live Salmonella Gallinarum 9R strain: Evaluation of efficacy, safety, and performance of serologic Salmonella tests. Avian Diseases, 45, 83–91.

    Google Scholar 

  • Fernandez, F., Hinton, M., & Van Gils, B. (2000). Evaluation of the effect of mannan-oligosaccharides on the competitive exclusion of Salmonella Enteritidis colonization in broiler chicks. Avian Pathology, 29, 575–581.

    Google Scholar 

  • Fernandez, F., Hinton, M., & Van Gils, B. (2002). Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathology, 31, 49–58.

    Google Scholar 

  • Fiorentin, L., Vieira, N. D., & Barioni Jr., W. (2005). Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathology, 34, 258–263.

    Google Scholar 

  • Fischer, S., Kittler, S., Klein, G., & Glunder, G. (2013). Impact of a single phage and a phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance. PLoS One, 8, e78543.

    Google Scholar 

  • Forkus, B., Ritter, S., Vlysidis, M., Geldart, K., & Kaznessis, Y. N. (2017). Antimicrobial probiotics reduce Salmonella enterica in Turkey gastrointestinal tracts. Scientific Reports, 7, 40695.

    Google Scholar 

  • Gaggia, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141(Suppl 1), S15–S28.

    Google Scholar 

  • Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Hautefort, I., Thompson, A., et al. (2006). Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Applied and Environmental Microbiology, 72, 946–949.

    Google Scholar 

  • Gharib Naseri, K., Rahimi, S., & Khaki, P. (2012). Comparison of the effects of probiotic, organic acid and medicinal plant on Campylobacter jejuni challenged broiler chickens. Journal of Agricultural Science and Technology, 14, 1485–1496.

    Google Scholar 

  • Goren, E., De Jong, W., Doornenbal, P., Bolder, N., Mulder, R., & Jansen, A. (1988). Reduction of Salmonella infection of broilers by spray application of intestinal microflora: A longitudinal study. The Veterinary Quarterly, 10, 249–255.

    Google Scholar 

  • Goren, E., De Jong, W., Doornenbal, P., Koopman, J., & Kennis, H. (1984). Protection of chicks against Salmonella infection induced by spray application of intestinal microflora in the hatchery. The Veterinary Quarterly, 6, 73–79.

    Google Scholar 

  • Grant, A., Hashem, F., & Parveen, S. (2016). Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry. Food Microbiology, 53, 104–109.

    Google Scholar 

  • Gregory, E., Barnhart, H., Dreesen, D. W., Stern, N. J., & Corn, J. L. (1997). Epidemiological study of Campylobacter spp. in broilers: Source, time of colonization, and prevalence. Avian Diseases, 41, 890–898.

    Google Scholar 

  • Grimes, J. L., Rahimi, S., Oviedo, E., Sheldon, B. W., & Santos, F. B. (2008). Effects of a direct-fed microbial (primalac) on Turkey poult performance and susceptibility to oral Salmonella challenge. Poultry Science, 87, 1464–1470.

    Google Scholar 

  • Grizard, D., & Barthomeuf, C. (1999). Non-digestible oligosaccharides used as prebiotic agents: Mode of production and beneficial effects on animal and human health. Reproduction Nutrition Development, 39, 563–588.

    Google Scholar 

  • Gusils, C., Chaia, A. P., Gonzalez, S., & Oliver, G. (1999). Lactobacilli isolated from chicken intestines: Potential use as probiotics. Journal of Food Protection, 62, 252–256.

    Google Scholar 

  • Hagens, S., & Loessner, M. J. (2010). Bacteriophage for biocontrol of foodborne pathogens: Calculations and considerations. Current Pharmaceutical Biotechnology, 11, 58–68.

    Google Scholar 

  • Hassan, J. O., & Curtiss 3rd, R. (1994). Development and evaluation of an experimental vaccination program using a live avirulent Salmonella Typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes. Infection and Immunity, 62, 5519–5527.

    Google Scholar 

  • Hassan, J. O., & Curtiss 3rd, R. (1996). Effect of vaccination of hens with an avirulent strain of Salmonella Typhimurium on immunity of progeny challenged with wild-type Salmonella strains. Infection and Immunity, 64, 938–944.

    Google Scholar 

  • Hechard, Y., & Sahl, H. G. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 84, 545–557.

    Google Scholar 

  • Hermans, D., Van Deun, K., Messens, W., Martel, A., Van Immerseel, F., Haesebrouck, F., et al. (2011). Campylobacter control in poultry by current intervention measures ineffective: Urgent need for intensified fundamental research. Veterinary Microbiology, 152, 219–228.

    Google Scholar 

  • Hermans, D., Van Steendam, K., Verbrugghe, E., Verlinden, M., Martel, A., Seliwiorstow, T., et al. (2014). Passive immunization to reduce Campylobacter jejuni colonization and transmission in broiler chickens. Veterinary Research, 45, 27.

    Google Scholar 

  • Hinton Jr., A., Corrier, D. E., Spates, G. E., Norman, J. O., Ziprin, R. L., Beier, R. C., et al. (1990). Biological control of Salmonella Typhimurium in young chickens. Avian Diseases, 34, 626–633.

    Google Scholar 

  • Hinton Jr., A., Corrier, D. E., Ziprin, R. L., Spates, G. E., & Deloach, J. R. (1991). Comparison of the efficacy of cultures of cecal anaerobes as inocula to reduce Salmonella Typhimurium colonization in chicks with or without dietary lactose. Poultry Science, 70, 67–73.

    Google Scholar 

  • Hinton, M., Linton, A. H., & Perry, F. G. (1985). Control of Salmonella by acid disinfection of chicks’ food. The Veterinary Record, 116, 502.

    Google Scholar 

  • Humphrey, T. J., Henley, A., & Lanning, D. G. (1993). The colonization of broiler chickens with Campylobacter jejuni: Some epidemiological investigations. Epidemiology and Infection, 110, 601–607.

    Google Scholar 

  • Humphrey, T. J., & Lanning, D. G. (1988). The vertical transmission of Salmonellas and formic acid treatment of chicken feed. A possible strategy for control. Epidemiology and Infection, 100, 43–49.

    Google Scholar 

  • Iba, A. M., & Berchieri Jr., A. (1995). Studies on the use of a formic acid-propionic acid mixture (bio-add) to control experimental Salmonella infection in broiler chickens. Avian Pathology, 24, 303–311.

    Google Scholar 

  • Inoue, A. Y., Berchieri, A. J., Bernardino, A., Paiva, J. B., & Sterzo, E. V. (2008). Passive immunity of progeny from broiler breeders vaccinated with oil-emulsion bacterin against Salmonella Enteritidis. Avian Diseases, 52, 567–571.

    Google Scholar 

  • Jacob, J., & Pescatore A. Gut health and organic acids, antimicrobial peptides, and botanicals as natural feed additives. Organic Meat Production and Processing. Eds: Ricke SC, Van Loo EJ, Johnson MG, O'Bryan CA. 2012, Oxford, UK: Wiley-Blackwell, 351-378. 10.1002/9781118229088.ch21.

    Google Scholar 

  • Johny, A. K., Baskaran, S. A., Charles, A. S., Amalaradjou, M. A., Darre, M. J., Khan, M. I., et al. (2009). Prophylactic supplementation of caprylic acid in feed reduces Salmonella enteritidis colonization in commercial broiler chicks. Journal of Food Protection, 72, 722–727.

    Google Scholar 

  • Johny, A. K., Darre, M., Hoagland, T., Schreiber, D., Donoghue, A., Donoghue, D., et al. (2008). Antibacterial effect of trans-cinnamaldehyde on Salmonella Enteritidis and Campylobacter jejuni in chicken drinking water. Journal of Applied Poultry Research, 17, 490–497.

    Google Scholar 

  • Jones, F. (2011). A review of practical Salmonella control measures in animal feed. Journal of Applied Poultry Research, 20, 102–113.

    Google Scholar 

  • Kaiser, M. G., & Lamont, S. J. (2001). Genetic line differences in survival and pathogen load in young layer chicks after Salmonella enterica serovar Enteritidis exposure. Poultry Science, 80, 1105–1108.

    Google Scholar 

  • Kerr, A. K., Farrar, A. M., Waddell, L. A., Wilkins, W., Wilhelm, B. J., Bucher, O., et al. (2013). A systematic review-meta-analysis and meta-regression on the effect of selected competitive exclusion products on Salmonella spp. prevalence and concentration in broiler chickens. Preventive Veterinary Medicine, 111, 112–125.

    Google Scholar 

  • Khoury, C. A., & Meinersmann, R. J. (1995). A genetic hybrid of the Campylobacter jejuni flaA gene with LT-B of Escherichia coli and assessment of the efficacy of the hybrid protein as an oral chicken vaccine. Avian Diseases, 39, 812–820.

    Google Scholar 

  • Kittler, S., Fischer, S., Abdulmawjood, A., Glunder, G., & Klein, G. (2013). Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks. Applied and Environmental Microbiology, 79, 7525–7533.

    Google Scholar 

  • Kollanoor Johny, A., Darre, M., Donoghue, A., Donoghue, D., & Venkitanarayanan, K. (2010). Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. Journal of Applied Poultry Research, 19, 237–244.

    Google Scholar 

  • Kollanoor-Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., et al. (2012). Reduction of Salmonella enterica serovar Enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78, 2981–2987.

    Google Scholar 

  • Kurekci, C., Al Jassim, R., Hassan, E., Bishop-Hurley, S. L., Padmanabha, J., & McSweeney, C. S. (2014). Effects of feeding plant-derived agents on the colonization of Campylobacter jejuni in broiler chickens. Poultry Science, 93, 2337–2346.

    Google Scholar 

  • Lahellec, C., & Colin, P. (1985). Relationship between serotypes of Salmonellae from hatcheries and rearing farms and those from processed poultry carcases. British Poultry Science, 26, 179–186.

    Google Scholar 

  • Le Bouquin, S., Allain, V., Rouxel, S., Petetin, I., Picherot, M., Michel, V., et al. (2010). Prevalence and risk factors for Salmonella spp. contamination in French broiler-chicken flocks at the end of the rearing period. Preventive Veterinary Medicine, 97, 245–251.

    Google Scholar 

  • Lee, M. D., & Newell, D. G. (2006). Campylobacter in poultry: Filling an ecological niche. Avian Diseases, 50, 1–9.

    Google Scholar 

  • Li, X., Swaggerty, C. L., Kogut, M. H., Chiang, H., Wang, Y., Genovese, K. J., et al. (2008). The paternal effect of Campylobacter jejuni colonization in ceca in broilers. Poultry Science, 87, 1742–1747.

    Google Scholar 

  • Li, X., Swaggerty, C. L., Kogut, M. H., Chiang, H. I., Wang, Y., Genovese, K. J., et al. (2010). Gene expression profiling of the local cecal response of genetic chicken lines that differ in their susceptibility to Campylobacter jejuni colonization. PLoS One, 5, e11827.

    Google Scholar 

  • Liljebjelke, K. A., Hofacre, C. L., Liu, T., White, D. G., Ayers, S., Young, S., et al. (2005). Vertical and horizontal transmission of Salmonella within integrated broiler production system. Foodborne Pathogens and Disease, 2, 90–102.

    Google Scholar 

  • Lin, J. (2009). Novel approaches for Campylobacter control in poultry. Foodborne Pathogens and Disease, 6, 755–765.

    Google Scholar 

  • Line, J. (2002). Campylobacter and Salmonella populations associated with chickens raised on acidified litter. Poultry Science, 81, 1473–1477.

    Google Scholar 

  • Line, J. E., & Bailey, J. S. (2006). Effect of on-farm litter acidification treatments on Campylobacter and Salmonella populations in commercial broiler houses in Northeast Georgia. Poultry Science, 85, 1529–1534.

    Google Scholar 

  • Line, J. E., Bailey, J. S., Cox, N. A., Stern, N. J., & Tompkins, T. (1998). Effect of yeast-supplemented feed on Salmonella and Campylobacter populations in broilers. Poultry Science, 77, 405–410.

    Google Scholar 

  • Line, J. E., Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., et al. (2008). Isolation and purification of enterocin E-760 with broad antimicrobial activity against Gram-positive and Gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 52, 1094–1100.

    Google Scholar 

  • Loc Carrillo, C., Atterbury, R. J., el-Shibiny, A., Connerton, P. L., Dillon, E., Scott, A., et al. (2005). Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Applied and Environmental Microbiology, 71, 6554–6563.

    Google Scholar 

  • Lu, J., Sanchez, S., Hofacre, C., Maurer, J. J., Harmon, B. G., & Lee, M. D. (2003). Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Applied and Environmental Microbiology, 69, 901–908.

    Google Scholar 

  • Maciorowski, K. G., Jones, F. T., Pillai, S. D., & Ricke, S. C. (2004). Incidence, sources, and control of food-borne Salmonella spp. in poultry feeds. World’s Poultry Science Journal, 60, 446–457.

    Google Scholar 

  • Marin, C., Balasch, S., Vega, S., & Lainez, M. (2011). Sources of Salmonella contamination during broiler production in Eastern Spain. Preventive Veterinary Medicine, 98, 39–45.

    Google Scholar 

  • Mathews, K. (2014). Increased dressed weights mitigate effects of reduced cattle and hog slaughter. In Livestock and, dairy and poultry outlook (pp. 1–23). Washington, DC: United States Department of Agriculture – Economic Research Service.

    Google Scholar 

  • McGruder, E. D., Ramirez, G. A., Kogut, M. H., Moore, R. W., Corrier, D. E., Deloach, J. R., et al. (1995). In ovo administration of Salmonella Enteritidis-immune lymphokines confers protection to neonatal chicks against Salmonella Enteritidis organ infectivity. Poultry Science, 74, 18–25.

    Google Scholar 

  • Meenakshi, M., Bakshi, C. S., Butchaiah, G., Bansal, M. P., Siddiqui, M. Z., & Singh, V. P. (1999). Adjuvanted outer membrane protein vaccine protects poultry against infection with Salmonella Enteritidis. Veterinary Research Communications, 23, 81–90.

    Google Scholar 

  • Methner, U., Barrow, P. A., Berndt, A., & Rychlik, I. (2011). Salmonella Enteritidis with double deletion in phoPfliC--a potential live Salmonella vaccine candidate with novel characteristics for use in chickens. Vaccine, 29, 3248–3253.

    Google Scholar 

  • Meunier, M., Guyard-Nicodeme, M., Dory, D., & Chemaly, M. (2016). Control strategies against Campylobacter at the poultry production level: Biosecurity measures, feed additives and vaccination. Journal of Applied Microbiology, 120, 1139–1173.

    Google Scholar 

  • Mountzouris, K., Balaskas, C., Xanthakos, I., Tzivinikou, A., & Fegeros, K. (2009). Effects of a multi-species probiotic on biomarkers of competitive exclusion efficacy in broilers challenged with Salmonella enteritidis. British Poultry Science, 50, 467–478.

    Google Scholar 

  • Neal-McKinney, J. M., Samuelson, D. R., Eucker, T. P., Nissen, M. S., Crespo, R., & Konkel, M. E. (2014). Reducing Campylobacter jejuni colonization of poultry via vaccination. PLoS One, 9, e114254.

    Google Scholar 

  • Nisbet, D. (2002). Defined competitive exclusion cultures in the prevention of enteropathogen colonisation in poultry and swine. Antonie Van Leeuwenhoek, 81, 481–486.

    Google Scholar 

  • Nisbet, D. J., Corrier, D. E., Scanlan, C. M., Hollister, A. G., Beier, R. C., & DeLoach, J. R. (1993). Effect of a defined continuous-flow derived bacterial culture and dietary lactose on Salmonella Typhimurium colonization in broiler chickens. Avian Diseases, 37, 1017–1025.

    Google Scholar 

  • O’Flynn, G., Ross, R. P., Fitzgerald, G. F., & Coffey, A. (2004). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Applied and Environmental Microbiology, 70, 3417–3424.

    Google Scholar 

  • Oliver, S. P., Boor, K. J., Murphy, S. C., & Murinda, S. E. (2009). Food safety hazards associated with consumption of raw milk. Foodborne Pathogens and Disease, 6, 793–806.

    Google Scholar 

  • Orndorff, B. W., Novak, C. L., Pierson, F. W., Caldwell, D. J., & McElroy, A. P. (2005). Comparison of prophylactic or therapeutic dietary administration of capsaicin for reduction of Salmonella in broiler chickens. Avian Diseases, 49, 527–533.

    Google Scholar 

  • Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J., et al. (2013). Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerging Infectious Diseases, 19, 407–415.

    Google Scholar 

  • Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82, 627–631.

    Google Scholar 

  • Payne, J., Kroger, E., & Watkins, S. (2002). Evaluation of litter treatments on Salmonella recovery from poultry litter. Journal of Applied Poultry Research, 11, 239–243.

    Google Scholar 

  • Pivnick, H., & Nurmi, E. (1982). Nurmi concept and its role in the control of Salmonellae in poultry. In R. Davies (Ed.), Developments in food microbiology (Vol. 1, pp. 41–70). London: Applied Science Publishers.

    Google Scholar 

  • Rahimi, S., Shiraz, Z. M., Salehi, T. Z., Torshizi, M. A. K., & Grimes, J. L. (2007). Prevention of Salmonella infection in poultry by specific egg-derived antibody. International Journal of Poultry Science, 6, 230–235.

    Google Scholar 

  • Rajan, K., Shi, Z., & Ricke, S. C. (2017). Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Critical Reviews in Microbiology, 43, 370–392.

    Google Scholar 

  • Ramirez, G. A., Sarlin, L. L., Caldwell, D. J., Yezak Jr., C. R., Hume, M. E., Corrier, D. E., et al. (1997). Effect of feed withdrawal on the incidence of Salmonella in the crops and ceca of market age broiler chickens. Poultry Science, 76, 654–656.

    Google Scholar 

  • Rantala, M., & Nurmi, E. (1973). Prevention of the growth of Salmonella Infantis in chicks by the flora of the alimentary tract of chickens. British Poultry Science, 14, 627–630.

    Google Scholar 

  • Redmond, S. B., Chuammitri, P., Andreasen, C. B., Palic, D., & Lamont, S. J. (2009). Chicken heterophils from commercially selected and non-selected genetic lines express cytokines differently after in vitro exposure to Salmonella Enteritidis. Veterinary Immunology and Immunopathology, 132, 129–134.

    Google Scholar 

  • Rehman, H., Vahjen, W., Kohl-Parisini, A., Ijaz, A., & Zentek, J. (2009). Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. World’s Poultry Science Journal, 65, 75–90.

    Google Scholar 

  • Reichling, J., Schnitzler, P., Suschke, U., & Saller, R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties--an overview. Forschende Komplementärmedizin, 16, 79–90.

    Google Scholar 

  • Rice, B. E., Rollins, D. M., Mallinson, E. T., Carr, L., & Joseph, S. W. (1997). Campylobacter jejuni in broiler chickens: Colonization and humoral immunity following oral vaccination and experimental infection. Vaccine, 15, 1922–1932.

    Google Scholar 

  • Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82, 632–639.

    Google Scholar 

  • Ricke, S. C. (2015). Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poultry Science, 94, 1411–1418.

    Google Scholar 

  • Roche, A. J., Cox, N. A., Richardson, L. J., Buhr, R. J., Cason, J. A., Fairchild, B. D., et al. (2009). Transmission of Salmonella to broilers by contaminated larval and adult lesser mealworms, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Poultry Science, 88, 44–48.

    Google Scholar 

  • Roll, V. F., Dai Pra, M. A., & Roll, A. P. (2011). Research on Salmonella in broiler litter reused for up to 14 consecutive flocks. Poultry Science, 90, 2257–2262.

    Google Scholar 

  • Sahin, O., Kassem, I. I., Shen, Z., Lin, J., Rajashekara, G., & Zhang, Q. (2015). Campylobacter in poultry: Ecology and potential interventions. Avian Diseases, 59, 185–200.

    Google Scholar 

  • Saint-Cyr, M. J., Guyard-Nicodeme, M., Messaoudi, S., Chemaly, M., Cappelier, J. M., Dousset, X., et al. (2016). Recent advances in screening of anti-Campylobacter activity in probiotics for use in poultry. Frontiers in Microbiology, 7, 553.

    Google Scholar 

  • Sang, Y., & Blecha, F. (2008). Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Animal Health Research Reviews, 9, 227–235.

    Google Scholar 

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States--major pathogens. Emerging Infectious Diseases, 17, 7–15.

    Google Scholar 

  • Schade, R., Calzado, E. G., Sarmiento, R., Chacana, P. A., Porankiewicz-Asplund, J., & Terzolo, H. R. (2005). Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine. Alternatives to Laboratory Animals, 33, 129–154.

    Google Scholar 

  • Schrezenmeir, J., & de Vrese, M. (2001). Probiotics, prebiotics, and synbiotics--approaching a definition. The American Journal of Clinical Nutrition, 73, 361S–364S.

    Google Scholar 

  • Skanseng, B., Kaldhusdal, M., Moen, B., Gjevre, A. G., Johannessen, G. S., Sekelja, M., et al. (2010). Prevention of intestinal Campylobacter jejuni colonization in broilers by combinations of in-feed organic acids. Journal of Applied Microbiology, 109, 1265–1273.

    Google Scholar 

  • Skov, M. N., Madsen, J. J., Rahbek, C., Lodal, J., Jespersen, J. B., Jorgensen, J. C., et al. (2008). Transmission of Salmonella between wildlife and meat-production animals in Denmark. Journal of Applied Microbiology, 105, 1558–1568.

    Google Scholar 

  • Solis de Los Santos, F., Donoghue, A. M., Venkitanarayanan, K., Dirain, M. L., Reyes-Herrera, I., Blore, P. J., et al. (2008a). Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens. Poultry Science, 87, 800–804.

    Google Scholar 

  • Solis de Los Santos, F., Donoghue, A. M., Venkitanarayanan, K., Reyes-Herrera, I., Metcalf, J. H., Dirain, M. L., et al. (2008b). Therapeutic supplementation of caprylic acid in feed reduces Campylobacter jejuni colonization in broiler chicks. Applied and Environmental Microbiology, 74, 4564–4566.

    Google Scholar 

  • Spring, P., Wenk, C., Dawson, K. A., & Newman, K. E. (2000). The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella-challenged broiler chicks. Poultry Science, 79, 205–211.

    Google Scholar 

  • Springer, S., Lindner, T., Ahrens, M., Woitow, G., Prandini, F., & Selbitz, H. J. (2011). Duration of immunity induced in chickens by an attenuated live Salmonella Enteritidis vaccine and an inactivated Salmonella Enteritidis/Typhimurium vaccine. Berliner und Münchener Tierärztliche Wochenschrift, 124, 89–93.

    Google Scholar 

  • Stern, N. J., Fedorka-Cray, P., Bailey, J. S., Cox, N. A., Craven, S. E., Hiett, K. L., et al. (2001). Distribution of Campylobacter spp. in selected U.S. poultry production and processing operations. Journal of Food Protection, 64, 1705–1710.

    Google Scholar 

  • Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Kovalev, Y. N., Volodina, L. I., Perelygin, V. V., et al. (2005). Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. Journal of Food Protection, 68, 1450–1453.

    Google Scholar 

  • Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., et al. (2006). Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrobial Agents and Chemotherapy, 50, 3111–3116.

    Google Scholar 

  • Stringfellow, K., Caldwell, D., Lee, J., Byrd, A., Carey, J., Kessler, K., et al. (2010). Pasteurization of chicken litter with steam and quicklime to reduce Salmonella Typhimurium. Journal of Applied Poultry Research, 19, 380–386.

    Google Scholar 

  • Šušković, J., Kos, B., Goreta, J., & Matošić, S. (2001). Role of lactic acid bacteria and bifidobacteria in synbiotic effect. Food Technology and Biotechnology, 39, 227–235.

    Google Scholar 

  • Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., Borzenkov, V. N., et al. (2008). Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. Journal of Agricultural and Food Chemistry, 56, 1942–1948.

    Google Scholar 

  • Svetoch, E. A., & Stern, N. J. (2010). Bacteriocins to control Campylobacter spp. in poultry--A review. Poultry Science, 89, 1763–1768.

    Google Scholar 

  • Svetoch, E. A., Stern, N. J., Eruslanov, B. V., Kovalev, Y. N., Volodina, L. I., Perelygin, V. V., et al. (2005). Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. Journal of Food Protection, 68, 11–17.

    Google Scholar 

  • Swaggerty, C. L., Pevzner, I. Y., He, H., Genovese, K. J., Nisbet, D. J., Kaiser, P., et al. (2009). Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens. Foodborne Pathogens and Disease, 6, 777–783.

    Google Scholar 

  • Swaggerty, C. L., Pevzner, I. Y., & Kogut, M. H. (2014). Selection for pro-inflammatory mediators yields chickens with increased resistance against Salmonella enterica serovar Enteritidis. Poultry Science, 93, 535–544.

    Google Scholar 

  • Tellez, G. I., Jaeger, L., Dean, C. E., Corrier, D. E., DeLoach, J. R., Williams, J. D., et al. (1993). Effect of prolonged administration of dietary capsaicin on Salmonella Enteritidis infection in leghorn chicks. Avian Diseases, 37, 143–148.

    Google Scholar 

  • Thitaram, S. N., Chung, C. H., Day, D. F., Hinton Jr., A., Bailey, J. S., & Siragusa, G. R. (2005). Isomaltooligosaccharide increases cecal Bifidobacterium population in young broiler chickens. Poultry Science, 84, 998–1003.

    Google Scholar 

  • Thompson, J. L., & Hinton, M. (1997). Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. British Poultry Science, 38, 59–65.

    Google Scholar 

  • Torrence, M. E. (2016). Introduction to preharvest food safety. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.PFS-0009-2015

  • Totton, S. C., Farrar, A. M., Wilkins, W., Bucher, O., Waddell, L. A., Wilhelm, B. J., et al. (2012). The effectiveness of selected feed and water additives for reducing Salmonella spp. of public health importance in broiler chickens: A systematic review, meta-analysis, and meta-regression approach. Preventive Veterinary Medicine, 106, 197–213.

    Google Scholar 

  • Toyota-Hanatani, Y., Kyoumoto, Y., Baba, E., Ekawa, T., Ohta, H., Tani, H., et al. (2009). Importance of subunit vaccine antigen of major Fli C antigenic site of Salmonella Enteritidis II: A challenge trial. Vaccine, 27, 1680–1684.

    Google Scholar 

  • Umaraw, P., Prajapati, A., Verma, A. K., Pathak, V., & Singh, V. P. (2017). Control of Campylobacter in poultry industry from farm to poultry processing unit: A review. Critical Reviews in Food Science and Nutrition, 57, 659–665.

    Google Scholar 

  • Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., & Venkitanarayanan, K. (2014). Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis. BioMed Research International, 2014, 761741.

    Google Scholar 

  • Upadhyaya, I., Upadhyay, A., Kollanoor-Johny, A., Mooyottu, S., Baskaran, S. A., Yin, H. B., et al. (2015). In-feed supplementation of trans-cinnamaldehyde reduces layer-chicken egg-borne transmission of Salmonella enterica serovar Enteritidis. Applied and Environmental Microbiology, 81, 2985–2994.

    Google Scholar 

  • Van Coillie, E., Goris, J., Cleenwerck, I., Grijspeerdt, K., Botteldoorn, N., Van Immerseel, F., et al. (2007). Identification of lactobacilli isolated from the cloaca and vagina of laying hens and characterization for potential use as probiotics to control Salmonella Enteritidis. Journal of Applied Microbiology, 102, 1095–1106.

    Google Scholar 

  • Van Immerseel, F., De Buck, J., Boyen, F., Bohez, L., Pasmans, F., Volf, J., et al. (2004). Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Applied and Environmental Microbiology, 70, 3582–3587.

    Google Scholar 

  • Van Immerseel, F., Russell, J., Flythe, M., Gantois, I., Timbermont, L., Pasmans, F., et al. (2006). The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathology, 35, 182–188.

    Google Scholar 

  • Vandeplas, S., Dubois Dauphin, R., Beckers, Y., Thonart, P., & Thewis, A. (2010). Salmonella in chicken: Current and developing strategies to reduce contamination at farm level. Journal of Food Protection, 73, 774–785.

    Google Scholar 

  • Vicente, J., Lopez, C., Avila, E., Morales, E., Hargis, B., & Tellez, G. (2007). Effect of dietary natural capsaicin on experimental Salmonella Enteritidis infection and yolk pigmentation in laying hens. International Journal of Poultry Science, 6, 393–396.

    Google Scholar 

  • Vidanarachchi, J., Mikkelsen, L., Sims, I., Iji, P., & Choct, M. (2005). Phytobiotics: Alternatives to antibiotic growth promoters in monogastric animal feeds. Recent Advances in Animal Nutrition in Australia, 15, 131–144.

    Google Scholar 

  • Wales, A., McLaren, I., Rabie, A., Gosling, R. J., Martelli, F., Sayers, R., et al. (2013). Assessment of the anti-Salmonella activity of commercial formulations of organic acid products. Avian Pathology, 42, 268–275.

    Google Scholar 

  • Wang, H. T., Yu, C., Hsieh, Y. H., Chen, S. W., Chen, B. J., & Chen, C. Y. (2011). Effects of albusin B (a bacteriocin) of Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorption of broiler chickens--its potential role as an alternative to feed antibiotics. Journal of the Science of Food and Agriculture, 91, 2338–2343.

    Google Scholar 

  • Wang, R. J., Li, D. F., & Bourne, S. (1998). Can 2000 years of herbal medicine history help us solve problems in the year 2000. In Proc Alltech’s Ann Symp Nottingham. Biotechnology in the Feed Industry (pp. 273–291). Nicholasville, KY: Alltech Technical Publications.

    Google Scholar 

  • Wedderkopp, A., Gradel, K. O., Jorgensen, J. C., & Madsen, M. (2001). Pre-harvest surveillance of Campylobacter and Salmonella in Danish broiler flocks: A 2-year study. International Journal of Food Microbiology, 68, 53–59.

    Google Scholar 

  • Wenk, C. (2006). Are herbs, botanicals and other related substances adequate replacements for antimicrobial growth promoters? In D. Barug, J. de Jong, J. Kies, & V. MWA (Eds.), Antimicrobial growth promoters (pp. 329–340). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Wernicki, A., Nowaczek, A., & Urban-Chmiel, R. (2017). Bacteriophage therapy to combat bacterial infections in poultry. Virology Journal, 14, 179.

    Google Scholar 

  • Widders, P. R., Thomas, L. M., Long, K. A., Tokhi, M. A., Panaccio, M., & Apos, E. (1998). The specificity of antibody in chickens immunised to reduce intestinal colonisation with Campylobacter jejuni. Veterinary Microbiology, 64, 39–50.

    Google Scholar 

  • Williams, Z., & Macklin, K. (2013). Reduction of Salmonella and ammonia emissions in broiler litter using sulfuric acid and aluminum sulfate. International Journal of Poultry Science, 12, 328–334.

    Google Scholar 

  • Windisch, W., Schedle, K., Plitzner, C., & Kroismayr, A. (2008). Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science, 86, E140–E148.

    Google Scholar 

  • Wong, C. L., Sieo, C. C., Tan, W. S., Abdullah, N., Hair-Bejo, M., Abu, J., et al. (2014). Evaluation of a lytic bacteriophage, Phi st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. International Journal of Food Microbiology, 172, 92–101.

    Google Scholar 

  • Yamazaki, M., Ohtsu, H., Yakabe, Y., Kishima, M., & Abe, H. (2012). In vitro screening of lactobacilli isolated from chicken excreta to control Salmonella Enteritidis and Typhimurium. British Poultry Science, 53, 183–189.

    Google Scholar 

  • Yang, Y., Iji, P., Kocher, A., Mikkelsen, L., & Choct, M. (2007). Effects of mannanoligosaccharide on growth performance, the development of gut microflora, and gut function of broiler chickens raised on new litter. Journal of Applied Poultry Research, 16, 280–288.

    Google Scholar 

  • Yusrizal, Y., & Chen, T. C. (2003). Effect of adding chicory fructans in feed on fecal and intestinal flora. International Journal of Poultry Science, 2, 188–194.

    Google Scholar 

  • Zhang, G., Ma, L., & Doyle, M. P. (2007a). Salmonellae reduction in poultry by competitive exclusion bacteria Lactobacillus salivarius and Streptococcus cristatus. Journal of Food Protection, 70, 874–878.

    Google Scholar 

  • Zhang, G., Ma, L., & Doyle, M. P. (2007b). Potential competitive exclusion bacteria from poultry inhibitory to Campylobacter jejuni and Salmonella. Journal of Food Protection, 70, 867–873.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Anne Amalaradjou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amalaradjou, M.A. (2019). Pre-harvest Approaches to Improve Poultry Meat Safety. In: Venkitanarayanan, K., Thakur, S., Ricke, S. (eds) Food Safety in Poultry Meat Production. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-030-05011-5_5

Download citation

Publish with us

Policies and ethics