Skip to main content

Avian Pathogenic Escherichia coli: Link to Foodborne Urinary Tract Infections in Humans

  • Chapter
  • First Online:
Food Safety in Poultry Meat Production

Part of the book series: Food Microbiology and Food Safety ((PRACT))

Abstract

Urinary tract infections (UTIs) caused by Escherichia coli are a serious societal and public health concern owing to the resultant morbidity, productivity loss, and healthcare costs. The increasing prevalence of UTIs caused by multidrug-resistant (MDR) E. coli combined with the dearth of effective preventative measures, such as vaccines, has kept UTIs on the radar of scientists, public health officials, and physicians. Historically, UTIs were viewed as individual, isolated infections caused by bacteria from the patient’s intrinsic endogenous intestinal flora; however, recent data suggest that the pathogenesis of some UTIs is due to a foodborne origin. The prevalence of UTIs caused by MDR strains of E. coli is increasingly reported from many countries. In parallel, MDR E. coli with urovirulence properties and some uropathogenic E. coli (UPEC) lineages have been isolated from poultry and poultry meat indicating possible zoonotic transmission of avian pathogenic E. coli (APEC) with poultry serving as a reservoir for UPEC. Considering the public health implications and societal burden presented by UTIs, the proposed poultry reservoir for UPEC merits thorough investigation. This chapter discusses a potential foodborne link between APEC and UTIs in humans, providing general knowledge on extraintestinal pathogenic E. coli in general, and then UPEC, APEC, and retail poultry E. coli, separately, followed by the present state of understanding of APEC as a cause of foodborne UTI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman, M., & Pluschke, G. (1986). Clonal analysis of descent and virulence among selected Escherichia coli. Annual Review of Microbiology, 40, 185–210. https://doi.org/10.1146/annurev.mi.40.100186.001153

    Google Scholar 

  • Adeyanju, G. T., & Ishola, O. (2014). Salmonella and Escherichia coli contamination of poultry meat from a processing plant and retail markets in Ibadan, Oyo State, Nigeria. Springerplus, 3, 139. https://doi.org/10.1186/2193-1801-3-139

    Google Scholar 

  • Aliyu, A. B., Saleha, A. A., Jalila, A., & Zunita, Z. (2016). Risk factors and spatial distribution of extended spectrum beta-lactamase-producing-Escherichia coli at retail poultry meat markets in Malaysia: A cross-sectional study. BMC Public Health, 16, 699. https://doi.org/10.1186/s12889-016-3377-2

    Google Scholar 

  • Allocati, N., Masulli, M., Alexeyev, M. F., & Di Ilio, C. (2013). Escherichia coli in Europe: An overview. International Journal of Environmental Research and Public Health, 10(12), 6235–6254. https://doi.org/10.3390/ijerph10126235

    Google Scholar 

  • Bagshaw, S. M., & Laupland, K. B. (2006). Epidemiology of intensive care unit-acquired urinary tract infections. Current Opinion in Infectious Diseases, 19(1), 67–71.

    Google Scholar 

  • Ballmer, K., Korczak, B. M., Kuhnert, P., Slickers, P., Ehricht, R., & Hachler, H. (2007). Fast DNA serotyping of Escherichia coli by use of an oligonucleotide microarray. Journal of Clinical Microbiology, 45(2), 370–379. https://doi.org/10.1128/jcm.01361-06

    Google Scholar 

  • Banerjee, R., & Johnson, J. R. (2014). A new clone sweeps clean: The enigmatic emergence of Escherichia coli sequence type 131. Antimicrobial Agents and Chemotherapy, 58(9), 4997–5004. https://doi.org/10.1128/aac.02824-14

    Google Scholar 

  • Banerjee, R., Robicsek, A., Kuskowski, M. A., Porter, S., Johnston, B. D., Sokurenko, E., et al. (2013). Molecular epidemiology of Escherichia coli sequence type 131 and its H30 and H30-Rx subclones among extended-spectrum-beta-lactamase-positive and -negative E. coli clinical isolates from the Chicago region, 2007 to 2010. Antimicrobial Agents and Chemotherapy, 57(12), 6385–6388. https://doi.org/10.1128/aac.01604-13

    Google Scholar 

  • Barbieri, N. L., de Oliveira, A. L., Tejkowski, T. M., Pavanelo, D. B., Matter, L. B., Pinheiro, S. R., et al. (2015). Molecular characterization and clonal relationships among Escherichia coli strains isolated from broiler chickens with colisepticemia. Foodborne Pathogens and Disease, 12(1), 74–83. https://doi.org/10.1089/fpd.2014.1815

    Google Scholar 

  • Bauchart, P., Germon, P., Bree, A., Oswald, E., Hacker, J., & Dobrindt, U. (2010). Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli--search for factors involved in host specificity or zoonotic potential. Microbial Pathogenesis, 49(3), 105–115. https://doi.org/10.1016/j.micpath.2010.05.004

    Google Scholar 

  • Belanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., & Dozois, C. M. (2011). Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunology and Medical Microbiology, 62(1), 1–10. https://doi.org/10.1111/j.1574-695X.2011.00797.x

    Google Scholar 

  • Berg, E. S., Wester, A. L., Ahrenfeldt, J., Mo, S. S., Slettemeas, J. S., Steinbakk, M., et al. (2017). Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/blaCMY-2 resistance plasmids. Clinical Microbiology and Infection, 23(6), 407.e409–407.e415. https://doi.org/10.1016/j.cmi.2016.12.035

    Google Scholar 

  • Bettelheim, K. A., Cooke, E. M., O’Farrell, S., & Shooter, R. A. (1977). The effect of diet on intestinal Escherichia coli. The Journal of Hygiene, 79(1), 43–45.

    Google Scholar 

  • Bidet, P., Metais, A., Mahjoub-Messai, F., Durand, L., Dehem, M., Aujard, Y., et al. (2007). Detection and identification by PCR of a highly virulent phylogenetic subgroup among extraintestinal pathogenic Escherichia coli B2 strains. Applied and Environmental Microbiology, 73(7), 2373–2377. https://doi.org/10.1128/aem.02341-06

    Google Scholar 

  • Bonacorsi, S., Clermont, O., Houdouin, V., Cordevant, C., Brahimi, N., Marecat, A., et al. (2003). Molecular analysis and experimental virulence of French and North American Escherichia coli neonatal meningitis isolates: Identification of a new virulent clone. The Journal of Infectious Diseases, 187(12), 1895–1906. https://doi.org/10.1086/375347

    Google Scholar 

  • Bonkat, G., Muller, G., Braissant, O., Frei, R., Tschudin-Suter, S., Rieken, M., et al. (2013). Increasing prevalence of ciprofloxacin resistance in extended-spectrum-beta-lactamase-producing Escherichia coli urinary isolates. World Journal of Urology, 31(6), 1427–1432. https://doi.org/10.1007/s00345-013-1031-5

    Google Scholar 

  • Bonnet, C., Diarrassouba, F., Brousseau, R., Masson, L., Topp, E., & Diarra, M. S. (2009). Pathotype and antibiotic resistance gene distributions of Escherichia coli isolates from broiler chickens raised on antimicrobial-supplemented diets. Applied and Environmental Microbiology, 75(22), 6955–6962. https://doi.org/10.1128/aem.00375-09

    Google Scholar 

  • Brzuszkiewicz, E., Gottschalk, G., Ron, E., Hacker, J., & Dobrindt, U. (2009). Adaptation of Pathogenic E. coli to various niches: Genome flexibility is the key. Genome Dynamics, 6, 110–125. https://doi.org/10.1159/000235766

    Google Scholar 

  • Burman, W. J., Breese, P. E., Murray, B. E., Singh, K. V., Batal, H. A., MacKenzie, T. D., et al. (2003). Conventional and molecular epidemiology of trimethoprim-sulfamethoxazole resistance among urinary Escherichia coli isolates. The American Journal of Medicine, 115(5), 358–364.

    Google Scholar 

  • Chen, S. L., Wu, M., Henderson, J. P., Hooton, T. M., Hibbing, M. E., Hultgren, S. J., et al. (2013). Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Science Translational Medicine, 5(184), 184ra160. https://doi.org/10.1126/scitranslmed.3005497

    Google Scholar 

  • Clermont, O., Bonacorsi, S., & Bingen, E. (2000). Rapid and simple determination of the Escherichia coli phylogenetic group. Applied and Environmental Microbiology, 66(10), 4555–4558.

    Google Scholar 

  • Clermont, O., Christenson, J. K., Denamur, E., & Gordon, D. M. (2013). The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports, 5(1), 58–65. https://doi.org/10.1111/1758-2229.12019

    Google Scholar 

  • Clermont, O., Gordon, D., & Denamur, E. (2015). Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiology (Reading, England), 161(Pt 5), 980–988. https://doi.org/10.1099/mic.0.000063

    Google Scholar 

  • Clermont, O., Lavollay, M., Vimont, S., Deschamps, C., Forestier, C., Branger, C., et al. (2008). The CTX-M-15-producing Escherichia coli diffusing clone belongs to a highly virulent B2 phylogenetic subgroup. The Journal of Antimicrobial Chemotherapy, 61(5), 1024–1028. https://doi.org/10.1093/jac/dkn084

    Google Scholar 

  • Colpan, A., Johnston, B., Porter, S., Clabots, C., Anway, R., Thao, L., et al. (2013). Escherichia coli sequence type 131 (ST131) subclone H30 as an emergent multidrug-resistant pathogen among US veterans. Clinical Infectious Diseases, 57(9), 1256–1265. https://doi.org/10.1093/cid/cit503

    Google Scholar 

  • Coque, T. M., Novais, A., Carattoli, A., Poirel, L., Pitout, J., Peixe, L., et al. (2008). Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerging Infectious Diseases, 14(2), 195–200. https://doi.org/10.3201/eid1402.070350

    Google Scholar 

  • Cordoba, G., Holm, A., Hansen, F., Hammerum, A. M., & Bjerrum, L. (2017). Prevalence of antimicrobial resistant Escherichia coli from patients with suspected urinary tract infection in primary care, Denmark. BMC Infectious Diseases, 17(1), 670. https://doi.org/10.1186/s12879-017-2785-y

    Google Scholar 

  • Corpet, D. E. (1988). Antibiotic resistance from food. The New England Journal of Medicine, 318(18), 1206–1207.

    Google Scholar 

  • Cortes, P., Blanc, V., Mora, A., Dahbi, G., Blanco, J. E., Blanco, M., et al. (2010). Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Applied and Environmental Microbiology, 76(9), 2799–2805. https://doi.org/10.1128/aem.02421-09

    Google Scholar 

  • Courpon-Claudinon, A., Lefort, A., Panhard, X., Clermont, O., Dornic, Q., Fantin, B., et al. (2011). Bacteraemia caused by third-generation cephalosporin-resistant Escherichia coli in France: Prevalence, molecular epidemiology and clinical features. Clinical Microbiology and Infection, 17(4), 557–565. https://doi.org/10.1111/j.1469-0691.2010.03298.x

    Google Scholar 

  • Crossman, L. C., Chaudhuri, R. R., Beatson, S. A., Wells, T. J., Desvaux, M., Cunningham, A. F., et al. (2010). A commensal gone bad: Complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. Journal of Bacteriology, 192(21), 5822–5831. https://doi.org/10.1128/jb.00710-10

    Google Scholar 

  • Croxen, M. A., & Finlay, B. B. (2010). Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 8(1), 26–38. https://doi.org/10.1038/nrmicro2265

    Google Scholar 

  • Dale, A. P., & Woodford, N. (2015). Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. The Journal of Infection, 71(6), 615–626. https://doi.org/10.1016/j.jinf.2015.09.009

    Google Scholar 

  • Dalmau, D., Navarro, F., Mirelis, B., Blanco, J., Garau, J., & Prats, G. (1996). Escherichia coli bacteraemia. Serotype O15:K52:H1 as a urinary pathogen. The Journal of Hospital Infection, 34(3), 233–234.

    Google Scholar 

  • Danzeisen, J. L., Wannemuehler, Y., Nolan, L. K., & Johnson, T. J. (2013). Comparison of multilocus sequence analysis and virulence genotyping of Escherichia coli from live birds, retail poultry meat, and human extraintestinal infection. Avian Diseases, 57(1), 104–108. https://doi.org/10.1637/10218-042812-ResNote.1

    Google Scholar 

  • DeFrances, C. J., Lucas, C. A., Buie, V. C., & Golosinskiy, A. (2008). 2006 National Hospital Discharge Survey. National Health Statistics Reports, 5, 1–20.

    Google Scholar 

  • Dho-Moulin, M., & Fairbrother, J. M. (1999). Avian pathogenic Escherichia coli (APEC). Veterinary Research, 30(2–3), 299–316.

    Google Scholar 

  • Dobrindt, U. (2005). (Patho-)genomics of Escherichia coli. International Journal of Medical Microbiology, 295(6–7), 357–371. https://doi.org/10.1016/j.ijmm.2005.07.009

    Google Scholar 

  • Donnenberg, M. S., & Welch, R. (1996). Virulence determinants of uropathogenic Escherichia coli. In H. L. T. Mobley & J. W. Warren (Eds.), Urinary tract infections: Molecular pathogenesis and clinical management (pp. 135–174). Washington, D.C.: American Society of Microbiology.

    Google Scholar 

  • Dziva, F., & Stevens, M. P. (2008). Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology: Journal of the WVPA, 37(4), 355–366. https://doi.org/10.1080/03079450802216652

    Google Scholar 

  • Egea, P., Lopez-Cerero, L., Torres, E., Gomez-Sanchez Mdel, C., Serrano, L., Navarro Sanchez-Ortiz, M. D., et al. (2012). Increased raw poultry meat colonization by extended spectrum beta-lactamase-producing Escherichia coli in the south of Spain. International Journal of Food Microbiology, 159(2), 69–73. https://doi.org/10.1016/j.ijfoodmicro.2012.08.002

    Google Scholar 

  • Ejrnaes, K. (2011). Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Danish Medical Bulletin, 58(4), B4187.

    Google Scholar 

  • EUCAST. (2011). European food safety authority. Scientific opinion on the public health risks of bacterial strains producing extended-spectrum b-lactamases and/or AmpC b-lactamases in food and food-producing animals. EFSA Journal, 9, 2322. http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/2322.pdf

    Google Scholar 

  • Ewers, C., Antao, E. M., Diehl, I., Philipp, H. C., & Wieler, L. H. (2009). Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Applied and Environmental Microbiology, 75(1), 184–192. https://doi.org/10.1128/aem.01324-08

    Google Scholar 

  • Ewers, C., Bethe, A., Semmler, T., Guenther, S., & Wieler, L. H. (2012). Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clinical Microbiology and Infectious Diseases, 18(7), 646–655. https://doi.org/10.1111/j.1469-0691.2012.03850.x

    Google Scholar 

  • Ewers, C., Li, G., Wilking, H., Kiessling, S., Alt, K., Antao, E. M., et al. (2007). Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? International Journal of Medical Microbiology, 297(3), 163–176. https://doi.org/10.1016/j.ijmm.2007.01.003

    Google Scholar 

  • Fernandez-Alarcon, C., Singer, R. S., & Johnson, T. J. (2011). Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS One, 6(8), e23415. https://doi.org/10.1371/journal.pone.0023415

    Google Scholar 

  • Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269–284. https://doi.org/10.1038/nrmicro3432

    Google Scholar 

  • Foxman, B. (2002). Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. The American Journal of Medicine, 113(Suppl 1A), 5S–13S.

    Google Scholar 

  • Foxman, B. (2003). Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Disease-a-Month: DM, 49(2), 53–70. https://doi.org/10.1067/mda.2003.7

    Google Scholar 

  • Foxman, B. (2010). The epidemiology of urinary tract infection. Nature Reviews Urology, 7(12), 653–660. https://doi.org/10.1038/nrurol.2010.190

    Google Scholar 

  • Foxman, B. (2014). Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics of North America, 28(1), 1–13. https://doi.org/10.1016/j.idc.2013.09.003

    Google Scholar 

  • Foxman, B., & Brown, P. (2003). Epidemiology of urinary tract infections: Transmission and risk factors, incidence, and costs. Infectious disease clinics of North America, 17(2), 227–241.

    Google Scholar 

  • Foxman, B., Manning, S. D., Tallman, P., Bauer, R., Zhang, L., Koopman, J. S., et al. (2002). Uropathogenic Escherichia coli are more likely than commensal E. coli to be shared between heterosexual sex partners. American Journal of Epidemiology, 156(12), 1133–1140.

    Google Scholar 

  • Foxman, B., Zhang, L., Tallman, P., Andree, B. C., Geiger, A. M., Koopman, J. S., et al. (1997). Transmission of uropathogens between sex partners. The Journal of Infectious Diseases, 175(4), 989–992.

    Google Scholar 

  • Fratamico, P. M., DebRoy, C., Liu, Y., Needleman, D. S., Baranzoni, G. M., & Feng, P. (2016). Advances in molecular serotyping and subtyping of Escherichia coli. Frontiers in Microbiology, 7, 644. https://doi.org/10.3389/fmicb.2016.00644

    Google Scholar 

  • Geerdes, H. F., Ziegler, D., Lode, H., Hund, M., Loehr, A., Fangmann, W., et al. (1992). Septicemia in 980 patients at a university hospital in Berlin: Prospective studies during 4 selected years between 1979 and 1989. Clinical Infectious Diseases, 15(6), 991–1002.

    Google Scholar 

  • Ghodousi, A., Bonura, C., Di Carlo, P., van Leeuwen, W. B., & Mammina, C. (2016). Extraintestinal pathogenic Escherichia coli sequence type 131 H30-R and H30-Rx subclones in retail chicken meat, Italy. International Journal of Food Microbiology, 228, 10–13. https://doi.org/10.1016/j.ijfoodmicro.2016.04.004

    Google Scholar 

  • Ghodousi, A., Bonura, C., Di Noto, A. M., & Mammina, C. (2015). Extended-spectrum beta-lactamase, AmpC-producing, and fluoroquinolone-resistant Escherichia coli in retail broiler chicken meat, Italy. Foodborne Pathogens and Disease, 12(7), 619–625. https://doi.org/10.1089/fpd.2015.1936

    Google Scholar 

  • Giufre, M., Graziani, C., Accogli, M., Luzzi, I., Busani, L., & Cerquetti, M. (2012). Escherichia coli of human and avian origin: Detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy. The Journal of Antimicrobial Chemotherapy, 67(4), 860–867. https://doi.org/10.1093/jac/dkr565

    Google Scholar 

  • Gomi, R., Matsuda, T., Matsumura, Y., Yamamoto, M., Tanaka, M., Ichiyama, S., et al. (2017). Whole-genome analysis of antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in river water. Applied and Environmental Microbiology, 83(5), e02703-16. https://doi.org/10.1128/aem.02703-16

    Google Scholar 

  • Gordon, D. M., Clermont, O., Tolley, H., & Denamur, E. (2008). Assigning Escherichia coli strains to phylogenetic groups: Multi-locus sequence typing versus the PCR triplex method. Environmental Microbiology, 10(10), 2484–2496. https://doi.org/10.1111/j.1462-2920.2008.01669.x

    Google Scholar 

  • Goullet, P., & Picard, B. (1989). Comparative electrophoretic polymorphism of esterases and other enzymes in Escherichia coli. Journal of General Microbiology, 135(1), 135–143. https://doi.org/10.1099/00221287-135-1-135

    Google Scholar 

  • Gransden, W. R., Eykyn, S. J., Phillips, I., & Rowe, B. (1990). Bacteremia due to Escherichia coli: A study of 861 episodes. Reviews of Infectious Diseases, 12(6), 1008–1018.

    Google Scholar 

  • Gruneberg, R. N. (1969). Relationship of infecting urinary organism to the faecal flora in patients with symptomatic urinary infection. Lancet (London, England), 2(7624), 766–768.

    Google Scholar 

  • Gupta, K., Hooton, T. M., Naber, K. G., Wullt, B., Colgan, R., Miller, L. G., et al. (2011). International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clinical Infectious Diseases, 52(5), e103–e120. https://doi.org/10.1093/cid/ciq257

    Google Scholar 

  • Gupta, K., Sahm, D. F., Mayfield, D., & Stamm, W. E. (2001). Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: A nationwide analysis. Clinical Infectious Diseases, 33(1), 89–94. https://doi.org/10.1086/320880

    Google Scholar 

  • Hadifar, S., Moghoofei, M., Nematollahi, S., Ramazanzadeh, R., Sedighi, M., Salehi-Abargouei, A., et al. (2017). Epidemiology of multidrug resistant uropathogenic Escherichia coli in Iran: A systematic review and meta-analysis. Japanese Journal of Infectious Diseases, 70(1), 19–25. https://doi.org/10.7883/yoken.JJID.2015.652

    Google Scholar 

  • Hansen, K. H., Bortolaia, V., Nielsen, C. A., Nielsen, J. B., Schonning, K., Agerso, Y., et al. (2016). Host-specific patterns of genetic diversity among IncI1-Igamma and IncK plasmids encoding CMY-2 beta-lactamase in Escherichia coli isolates from humans, poultry meat, poultry, and dogs in Denmark. Applied and Environmental Microbiology, 82(15), 4705–4714. https://doi.org/10.1128/aem.00495-16

    Google Scholar 

  • Hasman, H., Hammerum, A. M., Hansen, F., Hendriksen, R. S., Olesen, B., Agerso, Y., et al. (2015). Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveillance, 20(49). https://doi.org/10.2807/1560-7917.es.2015.20.49.30085

  • Hooton, T. M., & Stamm, W. E. (1997). Diagnosis and treatment of uncomplicated urinary tract infection. Infectious Disease Clinics of North America, 11(3), 551–581.

    Google Scholar 

  • Hussain, A., Ewers, C., Nandanwar, N., Guenther, S., Jadhav, S., Wieler, L. H., et al. (2012). Multiresistant uropathogenic Escherichia coli from a region in India where urinary tract infections are endemic: Genotypic and phenotypic characteristics of sequence type 131 isolates of the CTX-M-15 extended-spectrum-beta-lactamase-producing lineage. Antimicrobial Agents and Chemotherapy, 56(12), 6358–6365. https://doi.org/10.1128/aac.01099-12

    Google Scholar 

  • Ingle, D. J., Valcanis, M., Kuzevski, A., Tauschek, M., Inouye, M., Stinear, T., et al. (2016). In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microbial Genomics, 2(7), e000064. https://doi.org/10.1099/mgen.0.000064

    Google Scholar 

  • Jakobsen, L., Garneau, P., Bruant, G., Harel, J., Olsen, S. S., Porsbo, L. J., et al. (2012). Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat. European journal of clinical microbiology & infectious diseases: Official publication of the European Society of Clinical. Microbiology, 31(6), 1121–1129. https://doi.org/10.1007/s10096-011-1417-5

    Google Scholar 

  • Jakobsen, L., Garneau, P., Kurbasic, A., Bruant, G., Stegger, M., Harel, J., et al. (2011). Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin. Journal of Medical Microbiology, 60(Pt 10), 1502–1511. https://doi.org/10.1099/jmm.0.033993-0

    Google Scholar 

  • Jakobsen, L., Hammerum, A. M., & Frimodt-Moller, N. (2010a). Detection of clonal group A Escherichia coli isolates from broiler chickens, broiler chicken meat, community-dwelling humans, and urinary tract infection (UTI) patients and their virulence in a mouse UTI model. Applied and Environmental Microbiology, 76(24), 8281–8284. https://doi.org/10.1128/aem.01874-10

    Google Scholar 

  • Jakobsen, L., Hammerum, A. M., & Frimodt-Moller, N. (2010b). Virulence of Escherichia coli B2 isolates from meat and animals in a murine model of ascending urinary tract infection (UTI): Evidence that UTI is a zoonosis. Journal of Clinical Microbiology, 48(8), 2978–2980. https://doi.org/10.1128/jcm.00281-10

    Google Scholar 

  • Jakobsen, L., Kurbasic, A., Skjot-Rasmussen, L., Ejrnaes, K., Porsbo, L. J., Pedersen, K., et al. (2010c). Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathogens and Disease, 7(5), 537–547. https://doi.org/10.1089/fpd.2009.0409

    Google Scholar 

  • Jakobsen, L., Spangholm, D. J., Pedersen, K., Jensen, L. B., Emborg, H. D., Agerso, Y., et al. (2010d). Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. International Journal of Food Microbiology, 142(1–2), 264–272. https://doi.org/10.1016/j.ijfoodmicro.2010.06.025

    Google Scholar 

  • Johnson, J. R. (1991). Virulence factors in Escherichia coli urinary tract infection. Clinical Microbiology Reviews, 4(1), 80–128.

    Google Scholar 

  • Johnson, J. R., & Clabots, C. (2006). Sharing of virulent Escherichia coli clones among household members of a woman with acute cystitis. Clinical Infectious Diseases, 43(10), e101–e108. https://doi.org/10.1086/508541

    Google Scholar 

  • Johnson, J. R., Delavari, P., O’Bryan, T. T., Smith, K. E., & Tatini, S. (2005a). Contamination of retail foods, particularly Turkey, from community markets (Minnesota, 1999-2000) with antimicrobial-resistant and extraintestinal pathogenic Escherichia coli. Foodborne Pathogens and Disease, 2(1), 38–49. https://doi.org/10.1089/fpd.2005.2.38

    Google Scholar 

  • Johnson, J. R., Johnston, B., Clabots, C., Kuskowski, M. A., & Castanheira, M. (2010). Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clinical Infectious Diseases, 51(3), 286–294. https://doi.org/10.1086/653932

    Google Scholar 

  • Johnson, J. R., Johnston, B., Kuskowski, M. A., Sokurenko, E. V., & Tchesnokova, V. (2015). Intensity and mechanisms of fluoroquinolone resistance within the H30 and H30Rx subclones of Escherichia coli sequence type 131 compared with other fluoroquinolone-resistant E. coli. Antimicrobial Agents and Chemotherapy, 59(8), 4471–4480. https://doi.org/10.1128/aac.00673-15

    Google Scholar 

  • Johnson, J. R., Kaster, N., Kuskowski, M. A., & Ling, G. V. (2003). Identification of urovirulence traits in Escherichia coli by comparison of urinary and rectal E. coli isolates from dogs with urinary tract infection. Journal of Clinical Microbiology, 41(1), 337–345.

    Google Scholar 

  • Johnson, J. R., Kuskowski, M. A., Menard, M., Gajewski, A., Xercavins, M., & Garau, J. (2006a). Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status. The Journal of Infectious Diseases, 194(1), 71–78. https://doi.org/10.1086/504921

    Google Scholar 

  • Johnson, J. R., Kuskowski, M. A., Smith, K., O'Bryan, T. T., & Tatini, S. (2005b). Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. The Journal of Infectious Diseases, 191(7), 1040–1049. https://doi.org/10.1086/428451

    Google Scholar 

  • Johnson, J. R., Manges, A. R., O’Bryan, T. T., & Riley, L. W. (2002). A disseminated multidrug-resistant clonal group of uropathogenic Escherichia coli in pyelonephritis. Lancet (London, England), 359(9325), 2249–2251. https://doi.org/10.1016/s0140-6736(02)09264-4

    Google Scholar 

  • Johnson, J. R., Porter, S. B., Johnston, B., Thuras, P., Clock, S., Crupain, M., et al. (2017). Extraintestinal pathogenic and antimicrobial-resistant Escherichia coli, including sequence type 131 (ST131), from retail chicken breasts in the United States in 2013. Applied and Environmental Microbiology, 83(6), e02956-16. https://doi.org/10.1128/aem.02956-16

    Google Scholar 

  • Johnson, J. R., & Russo, T. A. (2002). Extraintestinal pathogenic Escherichia coli: “the other bad E coli”. The Journal of Laboratory and Clinical Medicine, 139(3), 155–162.

    Google Scholar 

  • Johnson, J. R., Sannes, M. R., Croy, C., Johnston, B., Clabots, C., Kuskowski, M. A., et al. (2007a). Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerging Infectious Diseases, 13(6), 838–846. https://doi.org/10.3201/eid1306.061576

    Google Scholar 

  • Johnson, J. R., & Stamm, W. E. (1989). Urinary tract infections in women: Diagnosis and treatment. Annals of Internal Medicine, 111(11), 906–917.

    Google Scholar 

  • Johnson, J. R., Stell, A. L., Delavari, P., Murray, A. C., Kuskowski, M., & Gaastra, W. (2001). Phylogenetic and pathotypic similarities between Escherichia coli isolates from urinary tract infections in dogs and extraintestinal infections in humans. The Journal of Infectious Diseases, 183(6), 897–906. https://doi.org/10.1086/319263

    Google Scholar 

  • Johnson, J. R., Urban, C., Weissman, S. J., Jorgensen, J. H., Lewis 2nd, J. S., Hansen, G., et al. (2012a). Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-beta-lactamase-producing E. coli from the United States, 2000 to 2009. Antimicrobial Agents and Chemotherapy, 56(5), 2364–2370. https://doi.org/10.1128/aac.05824-11

    Google Scholar 

  • Johnson, T. J., Johnson, S. J., & Nolan, L. K. (2006b). Complete DNA sequence of a ColBM plasmid from avian pathogenic Escherichia coli suggests that it evolved from closely related ColV virulence plasmids. Journal of Bacteriology, 188(16), 5975–5983. https://doi.org/10.1128/jb.00204-06

    Google Scholar 

  • Johnson, T. J., Logue, C. M., Johnson, J. R., Kuskowski, M. A., Sherwood, J. S., Barnes, H. J., et al. (2012b). Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathogens and Disease, 9(1), 37–46. https://doi.org/10.1089/fpd.2011.0961

    Google Scholar 

  • Johnson, T. J., Logue, C. M., Wannemuehler, Y., Kariyawasam, S., Doetkott, C., DebRoy, C., et al. (2009). Examination of the source and extended virulence genotypes of Escherichia coli contaminating retail poultry meat. Foodborne Pathogens and Disease, 6(6), 657–667. https://doi.org/10.1089/fpd.2009.0266

    Google Scholar 

  • Johnson, T. J., Siek, K. E., Johnson, S. J., & Nolan, L. K. (2005c). DNA sequence and comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli transmissible R plasmid. Antimicrobial Agents and Chemotherapy, 49(11), 4681–4688. https://doi.org/10.1128/aac.49.11.4681-4688.2005

    Google Scholar 

  • Johnson, T. J., Siek, K. E., Johnson, S. J., & Nolan, L. K. (2006c). DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. Journal of Bacteriology, 188(2), 745–758. https://doi.org/10.1128/jb.188.2.745-758.2006

    Google Scholar 

  • Johnson, T. J., Skyberg, J., & Nolan, L. K. (2004). Multiple antimicrobial resistance region of a putative virulence plasmid from an Escherichia coli isolate incriminated in avian colibacillosis. Avian Diseases, 48(2), 351–360. https://doi.org/10.1637/7121

    Google Scholar 

  • Johnson, T. J., Wannemeuhler, Y. M., Scaccianoce, J. A., Johnson, S. J., & Nolan, L. K. (2006d). Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. Antimicrobial Agents and Chemotherapy, 50(11), 3929–3933. https://doi.org/10.1128/aac.00569-06

    Google Scholar 

  • Johnson, T. J., Wannemuehler, Y., Doetkott, C., Johnson, S. J., Rosenberger, S. C., & Nolan, L. K. (2008a). Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. Journal of Clinical Microbiology, 46(12), 3987–3996. https://doi.org/10.1128/jcm.00816-08

    Google Scholar 

  • Johnson, T. J., Wannemuehler, Y., Johnson, S. J., Stell, A. L., Doetkott, C., Johnson, J. R., et al. (2008b). Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Applied and Environmental Microbiology, 74(22), 7043–7050. https://doi.org/10.1128/aem.01395-08

    Google Scholar 

  • Johnson, T. J., Wannemuehler, Y. M., Johnson, S. J., Logue, C. M., White, D. G., Doetkott, C., et al. (2007b). Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Applied and Environmental Microbiology, 73(6), 1976–1983. https://doi.org/10.1128/aem.02171-06

    Google Scholar 

  • Kaper, J. B., Nataro, J. P., & Mobley, H. L. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2(2), 123–140. https://doi.org/10.1038/nrmicro818

    Google Scholar 

  • Karfunkel, D., Carmeli, Y., Chmelnitsky, I., Kotlovsky, T., & Navon-Venezia, S. (2013). The emergence and dissemination of CTX-M-producing Escherichia coli sequence type 131 causing community-onset bacteremia in Israel. European Journal of Clinical Microbiology and Infectious Diseases, 32(4), 513–521. https://doi.org/10.1007/s10096-012-1765-9

    Google Scholar 

  • Kariyawasam, S., Scaccianoce, J. A., & Nolan, L. K. (2007). Common and specific genomic sequences of avian and human extraintestinal pathogenic Escherichia coli as determined by genomic subtractive hybridization. BMC Microbiology, 7, 81. https://doi.org/10.1186/1471-2180-7-81

    Google Scholar 

  • Kauffmann, F. (1947). The serology of the coli group. Journal of Immunology (Baltimore, MD: 1950), 57(1), 71–100.

    Google Scholar 

  • Kluytmans, J. A., Overdevest, I. T., Willemsen, I., Kluytmans-van den Bergh, M. F., van der Zwaluw, K., Heck, M., et al. (2013). Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: Comparison of strains, plasmids, resistance genes, and virulence factors. Clinical Infectious Diseases, 56(4), 478–487. https://doi.org/10.1093/cid/cis929

    Google Scholar 

  • Kluytmans-van den Bergh, M. F., Huizinga, P., Bonten, M. J., Bos, M., De Bruyne, K., Friedrich, A. W., et al. (2016). Presence of mcr-1-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009. Euro Surveillance, 21(9), 30149. https://doi.org/10.2807/1560-7917.es.2016.21.9.30149

    Google Scholar 

  • Kobayashi, R. K., Aquino, I., Ferreira, A. L., & Vidotto, M. C. (2011). EcoR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in southern Brazil. Foodborne Pathogens and Disease, 8(5), 631–634. https://doi.org/10.1089/fpd.2010.0726

    Google Scholar 

  • Koga, V. L., Rodrigues, G. R., Scandorieiro, S., Vespero, E. C., Oba, A., de Brito, B. G., et al. (2015). Evaluation of the antibiotic resistance and virulence of Escherichia coli strains isolated from chicken carcasses in 2007 and 2013 from Parana, Brazil. Foodborne Pathogens and Disease, 12(6), 479–485. https://doi.org/10.1089/fpd.2014.1888

    Google Scholar 

  • Kohler, C. D., & Dobrindt, U. (2011). What defines extraintestinal pathogenic Escherichia coli? International Journal of Medical Microbiology, 301(8), 642–647. https://doi.org/10.1016/j.ijmm.2011.09.006

    Google Scholar 

  • Kucheria, R., Dasgupta, P., Sacks, S. H., Khan, M. S., & Sheerin, N. S. (2005). Urinary tract infections: New insights into a common problem. Postgraduate Medical Journal, 81(952), 83–86. https://doi.org/10.1136/pgmj.2004.023036

    Google Scholar 

  • Le, Q. P., Ueda, S., Nguyen, T. N., Dao, T. V., Van Hoang, T. A., Tran, T. T., et al. (2015). Characteristics of extended-spectrum beta-lactamase-producing Escherichia coli in retail meats and shrimp at a local market in Vietnam. Foodborne Pathogens and Disease, 12(8), 719–725. https://doi.org/10.1089/fpd.2015.1954

    Google Scholar 

  • Leimbach, A., Hacker, J., & Dobrindt, U. (2013). E. coli as an all-rounder: The thin line between commensalism and pathogenicity. Current Topics in Microbiology and Immunology, 358, 3–32. https://doi.org/10.1007/82_2012_303

    Google Scholar 

  • Levy, S. B., FitzGerald, G. B., & Macone, A. B. (1976). Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature, 260(5546), 40–42.

    Google Scholar 

  • Lim, E. J., Ho, S. X., Cao, D. Y., Lau, Q. C., Koh, T. H., & Hsu, L. Y. (2016). Extended-spectrum beta-lactamase-producing Enterobacteriaceae in retail chicken meat in Singapore. Annals of the Academy of Medicine, Singapore, 45(12), 557–559.

    Google Scholar 

  • Lima-Filho, J. V., Martins, L. V., Nascimento, D. C., Ventura, R. F., Batista, J. E., Silva, A. F., et al. (2013). Zoonotic potential of multidrug-resistant extraintestinal pathogenic Escherichia coli obtained from healthy poultry carcasses in Salvador, Brazil. The Brazilian Journal of Infectious Diseases, 17(1), 54–61. https://doi.org/10.1016/j.bjid.2012.09.004

    Google Scholar 

  • Literak, I., Reitschmied, T., Bujnakova, D., Dolejska, M., Cizek, A., Bardon, J., et al. (2013). Broilers as a source of quinolone-resistant and extraintestinal pathogenic Escherichia coli in the Czech Republic. Microbial Drug Resistance (Larchmont, NY), 19(1), 57–63. https://doi.org/10.1089/mdr.2012.0124

    Google Scholar 

  • Litwin, M. S., Saigal, C. S., Yano, E. M., Avila, C., Geschwind, S. A., Hanley, J. M., et al. (2005). Urologic diseases in America project: Analytical methods and principal findings. The Journal of Urology, 173(3), 933–937. https://doi.org/10.1097/01.ju.0000152365.43125.3b

    Google Scholar 

  • Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/s1473-3099(15)00424-7

    Google Scholar 

  • Logue, C. M., Doetkott, C., Mangiamele, P., Wannemuehler, Y. M., Johnson, T. J., Tivendale, K. A., et al. (2012). Genotypic and phenotypic traits that distinguish neonatal meningitis-associated Escherichia coli from fecal E. coli isolates of healthy human hosts. Applied and Environmental Microbiology, 78(16), 5824–5830. https://doi.org/10.1128/aem.07869-11

    Google Scholar 

  • Logue, C. M., Wannemuehler, Y., Nicholson, B. A., Doetkott, C., Barbieri, N. L., & Nolan, L. K. (2017). Comparative analysis of phylogenetic assignment of human and avian ExPEC and Fecal commensal Escherichia coli using the (previous and revised) Clermont phylogenetic typing methods and its impact on avian pathogenic Escherichia coli (APEC) classification. Frontiers in Microbiology, 8, 283. https://doi.org/10.3389/fmicb.2017.00283

    Google Scholar 

  • Lyhs, U., Ikonen, I., Pohjanvirta, T., Raninen, K., Perko-Makela, P., & Pelkonen, S. (2012). Extraintestinal pathogenic Escherichia coli in poultry meat products on the Finnish retail market. Acta Veterinaria Scandinavica, 54, 64. https://doi.org/10.1186/1751-0147-54-64

    Google Scholar 

  • Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., et al. (1998). Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3140–3145.

    Google Scholar 

  • Maluta, R. P., Logue, C. M., Casas, M. R., Meng, T., Guastalli, E. A., Rojas, T. C., et al. (2014). Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS One, 9(8), e105016. https://doi.org/10.1371/journal.pone.0105016

    Google Scholar 

  • Manges, A. R. (2016). Escherichia coli and urinary tract infections: The role of poultry-meat. Clinical Microbiology and Infection, 22(2), 122–129. https://doi.org/10.1016/j.cmi.2015.11.010

    Google Scholar 

  • Manges, A. R., Johnson, J. R., Foxman, B., O’Bryan, T. T., Fullerton, K. E., & Riley, L. W. (2001). Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. The New England Journal of Medicine, 345(14), 1007–1013. https://doi.org/10.1056/NEJMoa011265

    Google Scholar 

  • Manges, A. R., Mende, K., Murray, C. K., Johnston, B. D., Sokurenko, E. V., Tchesnokova, V., et al. (2017). Clonal distribution and associated characteristics of Escherichia coli clinical and surveillance isolates from a military medical center. Diagnostic Microbiology and Infectious Disease, 87(4), 382–385. https://doi.org/10.1016/j.diagmicrobio.2017.01.007

    Google Scholar 

  • Manges, A. R., Smith, S. P., Lau, B. J., Nuval, C. J., Eisenberg, J. N., Dietrich, P. S., et al. (2007). Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: A case-control study. Foodborne Pathogens and Disease, 4(4), 419–431. https://doi.org/10.1089/fpd.2007.0026

    Google Scholar 

  • Markland, S. M., LeStrange, K. J., Sharma, M., & Kniel, K. E. (2015). Old friends in new places: Exploring the role of extraintestinal E. coli in intestinal disease and foodborne illness. Zoonoses and Public Health, 62(7), 491–496. https://doi.org/10.1111/zph.12194

    Google Scholar 

  • Marrs, C. F., Zhang, L., & Foxman, B. (2005). Escherichia coli mediated urinary tract infections: Are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiology Letters, 252(2), 183–190. https://doi.org/10.1016/j.femsle.2005.08.028

    Google Scholar 

  • Mathers, A. J., Peirano, G., & Pitout, J. D. (2015). The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clinical Microbiology Reviews, 28(3), 565–591. https://doi.org/10.1128/cmr.00116-14

    Google Scholar 

  • Maturana, V. G., de Pace, F., Carlos, C., Mistretta Pires, M., Amabile de Campos, T., Nakazato, G., et al. (2011). Subpathotypes of avian pathogenic Escherichia coli (APEC) exist as defined by their syndromes and virulence traits. The Open Microbiology Journal, 5(Suppl 1), 55–64. https://doi.org/10.2174/1874285801105010055

    Google Scholar 

  • Mehnert-Kay, S. A. (2005). Diagnosis and management of uncomplicated urinary tract infections. American Family Physician, 72(3), 451–456.

    Google Scholar 

  • Mellata, M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathogens and Disease, 10(11), 916–932. https://doi.org/10.1089/fpd.2013.1533

    Google Scholar 

  • Mellata, M., Ameiss, K., Mo, H., & Curtiss 3rd, R. (2010). Characterization of the contribution to virulence of three large plasmids of avian pathogenic Escherichia coli chi7122 (O78:K80:H9). Infection and Immunity, 78(4), 1528–1541. https://doi.org/10.1128/iai.00981-09

    Google Scholar 

  • Mellata, M., Johnson, J. R., & Curtiss 3rd, R. (2018). Escherichia coli isolates from commercial chicken meat and eggs cause sepsis, meningitis and urinary tract infection in rodent models of human infections. Zoonoses and Public Health, 65(1), 103–113. https://doi.org/10.1111/zph.12376

    Google Scholar 

  • Mellata, M., Maddux, J. T., Nam, T., Thomson, N., Hauser, H., Stevens, M. P., et al. (2012). New insights into the bacterial fitness-associated mechanisms revealed by the characterization of large plasmids of an avian pathogenic E. coli. PLoS One, 7(1), e29481. https://doi.org/10.1371/journal.pone.0029481

    Google Scholar 

  • Mellata, M., Touchman, J. W., & Curtiss, R. (2009). Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli chi7122 (O78:K80:H9). PLoS One, 4(1), e4232. https://doi.org/10.1371/journal.pone.0004232

    Google Scholar 

  • Mitchell, N. M., Johnson, J. R., Johnston, B., Curtiss 3rd, R., & Mellata, M. (2015). Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Applied and Environmental Microbiology, 81(3), 1177–1187. https://doi.org/10.1128/aem.03524-14

    Google Scholar 

  • Mo, S. S., Slettemeas, J. S., Berg, E. S., Norstrom, M., & Sunde, M. (2016). Plasmid and host strain characteristics of Escherichia coli resistant to extended-spectrum cephalosporins in the Norwegian broiler production. PLoS One, 11(4), e0154019. https://doi.org/10.1371/journal.pone.0154019

    Google Scholar 

  • Mora, A., Lopez, C., Herrera, A., Viso, S., Mamani, R., Dhabi, G., et al. (2012). Emerging avian pathogenic Escherichia coli strains belonging to clonal groups O111:H4-D-ST2085 and O111:H4-D-ST117 with high virulence-gene content and zoonotic potential. Veterinary Microbiology, 156(3–4), 347–352. https://doi.org/10.1016/j.vetmic.2011.10.033

    Google Scholar 

  • Moreno, E., Andreu, A., Perez, T., Sabate, M., Johnson, J. R., & Prats, G. (2006). Relationship between Escherichia coli strains causing urinary tract infection in women and the dominant faecal flora of the same hosts. Epidemiology and Infection, 134(5), 1015–1023. https://doi.org/10.1017/s0950268806005917

    Google Scholar 

  • Moulin-Schouleur, M., Reperant, M., Laurent, S., Bree, A., Mignon-Grasteau, S., Germon, P., et al. (2007). Extraintestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns. Journal of Clinical Microbiology, 45(10), 3366–3376. https://doi.org/10.1128/jcm.00037-07

    Google Scholar 

  • Murray, A. C., Kuskowski, M. A., & Johnson, J. R. (2004). Virulence factors predict Escherichia coli colonization patterns among human and animal household members. Annals of Internal Medicine, 140(10), 848–849.

    Google Scholar 

  • Nandanwar, N., Janssen, T., Kuhl, M., Ahmed, N., Ewers, C., & Wieler, L. H. (2014). Extraintestinal pathogenic Escherichia coli (ExPEC) of human and avian origin belonging to sequence type complex 95 (STC95) portray indistinguishable virulence features. International Journal of Medical Microbiology, 304(7), 835–842. https://doi.org/10.1016/j.ijmm.2014.06.009

    Google Scholar 

  • Nicolas-Chanoine, M. H., Bertrand, X., & Madec, J. Y. (2014). Escherichia coli ST131, an intriguing clonal group. Clinical Microbiology Reviews, 27(3), 543–574. https://doi.org/10.1128/cmr.00125-13

    Google Scholar 

  • Nicolas-Chanoine, M. H., Blanco, J., Leflon-Guibout, V., Demarty, R., Alonso, M. P., Canica, M. M., et al. (2008). Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. The Journal of Antimicrobial Chemotherapy, 61(2), 273–281. https://doi.org/10.1093/jac/dkm464

    Google Scholar 

  • Nolan, L. K., Barnes, H. B., Vaillancourt, J. P., Abdul-Aziz, T., & Logue, C. M. (2003). Colibacillosis. In D. E. Swayne, J. R. Glisson, L. R. McDougald, L. K. Nolan, D. L. Suarez, & V. L. Nair (Eds.), Diseases of poultry (Vol. 13, pp. 631–652). Ames, IA: Iowa State University Press.

    Google Scholar 

  • NORM/NORM-VET (2011). Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway. Tromsø/Oslo. 2012. ISSN:1502e2307 (print)/1890-9965 (electronic).

    Google Scholar 

  • NORM/NORM-VET (2012). Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway. Tromsø/Oslo. 2013. ISSN:1502e2307 (print)/1890-9965 (electronic).

    Google Scholar 

  • NORM/NORM-VET (2014). Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway. Tromsø/Oslo. 2015. ISSN:1502e2307 (print)/1890-9965 (electronic).

    Google Scholar 

  • Obata-Yasuoka, M., Ba-Thein, W., Tsukamoto, T., Yoshikawa, H., & Hayashi, H. (2002). Vaginal Escherichia coli share common virulence factor profiles, serotypes and phylogeny with other extraintestinal E. coli. Microbiology (Reading, England), 148(Pt 9), 2745–2752. https://doi.org/10.1099/00221287-148-9-2745

    Google Scholar 

  • Ochman, H., & Selander, R. K. (1984a). Evidence for clonal population structure in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 81(1), 198–201.

    Google Scholar 

  • Ochman, H., & Selander, R. K. (1984b). Standard reference strains of Escherichia coli from natural populations. Journal of Bacteriology, 157(2), 690–693.

    Google Scholar 

  • Olesen, B., Kolmos, H. J., Orskov, F., & Orskov, I. (1994). Cluster of multiresistant Escherichia coli O78:H10 in greater Copenhagen. Scandinavian Journal of Infectious Diseases, 26(4), 406–410.

    Google Scholar 

  • Olsen, R. H., Christensen, H., & Bisgaard, M. (2012). Comparative genomics of multiple plasmids from APEC associated with clonal outbreaks demonstrates major similarities and identifies several potential vaccine-targets. Veterinary Microbiology, 158(3–4), 384–393. https://doi.org/10.1016/j.vetmic.2012.03.008

    Google Scholar 

  • Orskov, I., Orskov, F., Jann, B., & Jann, K. (1977). Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriological Reviews, 41(3), 667–710.

    Google Scholar 

  • Orskov, I., Orskov, F., & Rowe, B. (1984). Six new E. coli O groups: O165, O166, O167, O168, O169 and O170. Acta Pathologica, Microbiologica, et Immunologica Scandinavica. Section B, 92(4), 189–193.

    Google Scholar 

  • Ozawa, M., Baba, K., & Asai, T. (2010). Molecular typing of avian pathogenic Escherichia coli O78 strains in Japan by using multilocus sequence typing and pulsed-field gel electrophoresis. The Journal of Veterinary Medical Science, 72(11), 1517–1520.

    Google Scholar 

  • Pehlivanlar Onen, S., Aslantas, O., Sebnem Yilmaz, E., & Kurekci, C. (2015). Prevalence of beta-lactamase producing Escherichia coli from retail meat in Turkey. Journal of Food Science, 80(9), M2023–M2029. https://doi.org/10.1111/1750-3841.12984

    Google Scholar 

  • Peirano, G., Schreckenberger, P. C., & Pitout, J. D. (2011). Characteristics of NDM-1-producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrobial Agents and Chemotherapy, 55(6), 2986–2988. https://doi.org/10.1128/aac.01763-10

    Google Scholar 

  • Peirano, G., van der Bij, A. K., Gregson, D. B., & Pitout, J. D. (2012). Molecular epidemiology over an 11-year period (2000 to 2010) of extended-spectrum beta-lactamase-producing Escherichia coli causing bacteremia in a centralized Canadian region. Journal of Clinical Microbiology, 50(2), 294–299. https://doi.org/10.1128/jcm.06025-11

    Google Scholar 

  • Petty, N. K., Ben Zakour, N. L., Stanton-Cook, M., Skippington, E., Totsika, M., Forde, B. M., et al. (2014). Global dissemination of a multidrug resistant Escherichia coli clone. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5694–5699. https://doi.org/10.1073/pnas.1322678111

    Google Scholar 

  • Phillips, I., Eykyn, S., King, A., Gransden, W. R., Rowe, B., Frost, J. A., et al. (1988). Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet (London, England), 1(8593), 1038–1041.

    Google Scholar 

  • Picard, B., Garcia, J. S., Gouriou, S., Duriez, P., Brahimi, N., Bingen, E., et al. (1999). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infection and Immunity, 67(2), 546–553.

    Google Scholar 

  • Pitout, J. D. (2012). Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Frontiers in Microbiology, 3, 9. https://doi.org/10.3389/fmicb.2012.00009

    Google Scholar 

  • Pitout, J. D., Gregson, D. B., Church, D. L., Elsayed, S., & Laupland, K. B. (2005). Community-wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calgary health region. Journal of Clinical Microbiology, 43(6), 2844–2849. https://doi.org/10.1128/jcm.43.6.2844-2849.2005

    Google Scholar 

  • Platell, J. L., Johnson, J. R., Cobbold, R. N., & Trott, D. J. (2011). Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Veterinary Microbiology, 153(1–2), 99–108. https://doi.org/10.1016/j.vetmic.2011.05.007

    Google Scholar 

  • Prats, G., Navarro, F., Mirelis, B., Dalmau, D., Margall, N., Coll, P., et al. (2000). Escherichia coli serotype O15:K52:H1 as a uropathogenic clone. Journal of Clinical Microbiology, 38(1), 201–209.

    Google Scholar 

  • Price, L. B., Johnson, J. R., Aziz, M., Clabots, C., Johnston, B., Tchesnokova, V., et al. (2013). The epidemic of extended-spectrum-beta-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio, 4(6), e00377–e00313. https://doi.org/10.1128/mBio.00377-13

    Google Scholar 

  • Pupo, G. M., Karaolis, D. K., Lan, R., & Reeves, P. R. (1997). Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infection and Immunity, 65(7), 2685–2692.

    Google Scholar 

  • Ribot, E. M., Fair, M. A., Gautom, R., Cameron, D. N., Hunter, S. B., Swaminathan, B., et al. (2006). Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathogens and Disease, 3(1), 59–67. https://doi.org/10.1089/fpd.2006.3.59

    Google Scholar 

  • Riley, L. W. (2014). Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clinical Microbiology and Infection, 20(5), 380–390. https://doi.org/10.1111/1469-0691.12646

    Google Scholar 

  • Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K., & Nolan, L. K. (2005a). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology (Reading, England), 151(Pt 6), 2097–2110. https://doi.org/10.1099/mic.0.27499-0

    Google Scholar 

  • Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., & Nolan, L. K. (2005b). Characterizing the APEC pathotype. Veterinary Research, 36(2), 241–256. https://doi.org/10.1051/vetres:2004057

    Google Scholar 

  • Ronco, T., Stegger, M., Olsen, R. H., Sekse, C., Nordstoga, A. B., Pohjanvirta, T., et al. (2017). Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production. BMC Genomics, 18(1), 13. https://doi.org/10.1186/s12864-016-3415-6

    Google Scholar 

  • Russo, T. A., & Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: Focus on an increasingly important endemic problem. Microbes and Infection, 5(5), 449–456.

    Google Scholar 

  • Sannes, M. R., Kuskowski, M. A., Owens, K., Gajewski, A., & Johnson, J. R. (2004). Virulence factor profiles and phylogenetic background of Escherichia coli isolates from veterans with bacteremia and uninfected control subjects. The Journal of Infectious Diseases, 190(12), 2121–2128. https://doi.org/10.1086/425984

    Google Scholar 

  • Scheutz, F., Cheasty, T., Woodward, D., & Smith, H. R. (2004). Designation of O174 and O175 to temporary O groups OX3 and OX7, and six new E. coli O groups that include Verocytotoxin-producing E. coli (VTEC): O176, O177, O178, O179, O180 and O181. APMIS, 112(9), 569–584. https://doi.org/10.1111/j.1600-0463.2004.apm1120903.x

    Google Scholar 

  • Schito, G. C., Naber, K. G., Botto, H., Palou, J., Mazzei, T., Gualco, L., et al. (2009). The ARESC study: An international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. International Journal of Antimicrobial Agents, 34(5), 407–413. https://doi.org/10.1016/j.ijantimicag.2009.04.012

    Google Scholar 

  • Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M., Gilmour, M. N., & Whittam, T. S. (1986). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology, 51(5), 873–884.

    Google Scholar 

  • Sheikh, A. A., Checkley, S., Avery, B., Chalmers, G., Bohaychuk, V., Boerlin, P., et al. (2012). Antimicrobial resistance and resistance genes in Escherichia coli isolated from retail meat purchased in Alberta, Canada. Foodborne Pathogens and Disease, 9(7), 625–631. https://doi.org/10.1089/fpd.2011.1078

    Google Scholar 

  • Silverman, J. A., Schreiber 4th, H. L., Hooton, T. M., & Hultgren, S. J. (2013). From physiology to pharmacy: Developments in the pathogenesis and treatment of recurrent urinary tract infections. Current Urology Reports, 14(5), 448–456. https://doi.org/10.1007/s11934-013-0354-5

    Google Scholar 

  • Skyberg, J. A., Johnson, T. J., Johnson, J. R., Clabots, C., Logue, C. M., & Nolan, L. K. (2006). Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infection and Immunity, 74(11), 6287–6292. https://doi.org/10.1128/iai.00363-06

    Google Scholar 

  • Skyberg, J. A., Johnson, T. J., & Nolan, L. K. (2008). Mutational and transcriptional analyses of an avian pathogenic Escherichia coli ColV plasmid. BMC Microbiology, 8, 24. https://doi.org/10.1186/1471-2180-8-24

    Google Scholar 

  • Smith, J. L., Fratamico, P. M., & Gunther, N. W. (2007). Extraintestinal pathogenic Escherichia coli. Foodborne Pathogens and Disease, 4(2), 134–163. https://doi.org/10.1089/fpd.2007.0087

    Google Scholar 

  • Sorsa, L. J., Dufke, S., Heesemann, J., & Schubert, S. (2003). Characterization of an iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia coli: Evidence for horizontal transfer of a chromosomal virulence factor. Infection and Immunity, 71(6), 3285–3293.

    Google Scholar 

  • Spurbeck, R. R., Dinh Jr., P. C., Walk, S. T., Stapleton, A. E., Hooton, T. M., Nolan, L. K., et al. (2012). Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infection and Immunity, 80(12), 4115–4122. https://doi.org/10.1128/iai.00752-12

    Google Scholar 

  • Stamm, W. E., & Hooton, T. M. (1993). Management of urinary tract infections in adults. The New England Journal of Medicine, 329(18), 1328–1334. https://doi.org/10.1056/nejm199310283291808

    Google Scholar 

  • Stenutz, R., Weintraub, A., & Widmalm, G. (2006). The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiology Reviews, 30(3), 382–403. https://doi.org/10.1111/j.1574-6976.2006.00016.x

    Google Scholar 

  • Stromberg, Z. R., Johnson, J. R., Fairbrother, J. M., Kilbourne, J., Van Goor, A., Curtiss, R. R., et al. (2017). Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PLoS One, 12(7), e0180599. https://doi.org/10.1371/journal.pone.0180599

    Google Scholar 

  • Terlizzi, M. E., Gribaudo, G., & Maffei, M. E. (2017). UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Frontiers in Microbiology, 8, 1566. https://doi.org/10.3389/fmicb.2017.01566

    Google Scholar 

  • Tivendale, K. A., Allen, J. L., & Browning, G. F. (2009a). Plasmid-borne virulence-associated genes have a conserved organization in virulent strains of avian pathogenic Escherichia coli. Journal of Clinical Microbiology, 47(8), 2513–2519. https://doi.org/10.1128/jcm.00391-09

    Google Scholar 

  • Tivendale, K. A., Noormohammadi, A. H., Allen, J. L., & Browning, G. F. (2009b). The conserved portion of the putative virulence region contributes to virulence of avian pathogenic Escherichia coli. Microbiology (Reading, England), 155(Pt 2), 450–460. https://doi.org/10.1099/mic.0.023143-0

    Google Scholar 

  • Toth, I., Dobrindt, U., Koscso, B., Kosa, A., Herpay, M., & Nagy, B. (2012). Genetic and phylogenetic analysis of avian extraintestinal and intestinal Escherichia coli. Acta Microbiologica et Immunologica Hungarica, 59(3), 393–409. https://doi.org/10.1556/AMicr.59.2012.3.10

    Google Scholar 

  • Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S., Bidet, P., et al. (2009). Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genetics, 5(1), e1000344. https://doi.org/10.1371/journal.pgen.1000344

    Google Scholar 

  • Trampel, D. W., Wannemuehler, Y., & Nolan, L. K. (2007). Characterization of Escherichia coli isolates from peritonitis lesions in commercial laying hens. Avian Diseases, 51(4), 840–844. https://doi.org/10.1637/7797-111906-regr1.1

    Google Scholar 

  • Vincent, C., Boerlin, P., Daignault, D., Dozois, C. M., Dutil, L., Galanakis, C., et al. (2010). Food reservoir for Escherichia coli causing urinary tract infections. Emerging Infectious Diseases, 16(1), 88–95. https://doi.org/10.3201/eid1601.091118

    Google Scholar 

  • Voets, G. M., Fluit, A. C., Scharringa, J., Schapendonk, C., van den Munckhof, T., Leverstein-van Hall, M. A., et al. (2013). Identical plasmid AmpC beta-lactamase genes and plasmid types in E. coli isolates from patients and poultry meat in the Netherlands. International Journal of Food Microbiology, 167(3), 359–362. https://doi.org/10.1016/j.ijfoodmicro.2013.10.001

    Google Scholar 

  • Warren, J. W. (1996). Clinical presentations and epidemiology of urinary tract infections. In L. T. Harry & J. Warren (Eds.), Urinary tract infections: Molecular pathogenesis and clinical management. Washington, D.C.: ASM Press.

    Google Scholar 

  • Weissman, S. J., Johnson, J. R., Tchesnokova, V., Billig, M., Dykhuizen, D., Riddell, K., et al. (2012). High-resolution two-locus clonal typing of extraintestinal pathogenic Escherichia coli. Applied and Environmental Microbiology, 78(5), 1353–1360. https://doi.org/10.1128/aem.06663-11

    Google Scholar 

  • WHO. (2014). Antimicrobial resistance: global report on surveillance. Retrieved October 25, 2017, from http://www.who.int/drugresistance/documents/surveillancereport/en/

  • Wijetunge, D. S., Gongati, S., DebRoy, C., Kim, K. S., Couraud, P. O., Romero, I. A., et al. (2015). Characterizing the pathotype of neonatal meningitis causing Escherichia coli (NMEC). BMC Microbiology, 15, 211. https://doi.org/10.1186/s12866-015-0547-9

    Google Scholar 

  • Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Wieler, L. H., et al. (2006). Sex and virulence in Escherichia coli: An evolutionary perspective. Molecular Microbiology, 60(5), 1136–1151. https://doi.org/10.1111/j.1365-2958.2006.05172.x

    Google Scholar 

  • Woodford, N., Kaufmann, M. E., Karisik, E., & Hartley, J. W. (2007). Molecular epidemiology of multiresistant Escherichia coli isolates from community-onset urinary tract infections in Cornwall, England. The Journal of Antimicrobial Chemotherapy, 59(1), 106–109. https://doi.org/10.1093/jac/dkl435

    Google Scholar 

  • Wu, Q., Xi, M., Lv, X., Xu, Y., Feng, Y., Li, Q., et al. (2014). Presence and antimicrobial susceptibility of Escherichia coli recovered from retail chicken in China. Journal of Food Protection, 77(10), 1773–1777. https://doi.org/10.4315/0362-028x.jfp-14-080

    Google Scholar 

  • Yamamoto, S., Tsukamoto, T., Terai, A., Kurazono, H., Takeda, Y., & Yoshida, O. (1997). Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli. The Journal of Urology, 157(3), 1127–1129.

    Google Scholar 

  • Zhanel, G. G., Hisanaga, T. L., Laing, N. M., DeCorby, M. R., Nichol, K. A., Palatnik, L. P., et al. (2005). Antibiotic resistance in outpatient urinary isolates: Final results from the North American urinary tract infection collaborative alliance (NAUTICA). International Journal of Antimicrobial Agents, 26(5), 380–388. https://doi.org/10.1016/j.ijantimicag.2005.08.003

    Google Scholar 

  • Zhang, L., & Foxman, B. (2003). Molecular epidemiology of Escherichia coli mediated urinary tract infections. Frontiers in Bioscience: a Journal and Virtual Library, 8, e235–e244.

    Google Scholar 

  • Zhang, L., Foxman, B., & Marrs, C. (2002). Both urinary and rectal Escherichia coli isolates are dominated by strains of phylogenetic group B2. Journal of Clinical Microbiology, 40(11), 3951–3955.

    Google Scholar 

  • Zhao, L., Gao, S., Huan, H., Xu, X., Zhu, X., Yang, W., et al. (2009). Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology (Reading, England), 155(Pt 5), 1634–1644. https://doi.org/10.1099/mic.0.024869-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashinie Kariyawasam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kariyawasam, S., Han, J. (2019). Avian Pathogenic Escherichia coli: Link to Foodborne Urinary Tract Infections in Humans. In: Venkitanarayanan, K., Thakur, S., Ricke, S. (eds) Food Safety in Poultry Meat Production. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-030-05011-5_12

Download citation

Publish with us

Policies and ethics