Skip to main content

Polymeric Semiconductors as Efficient Photocatalysts for Water Purification and Solar Hydrogen Production

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 31))

Abstract

Environmental contamination is one of the serious issues to an environment and human health due to the contamination of a wide range of organic chemicals, industrial dyes and other hazardous substances in the drinking water, air and land. The innovation of the photocatalytic process has been presented to be the green and feasible method for the environmental decontamination .

Photocatalysis has a wide range of application such as wastewater treatment (organic dye degradation), disinfection, solar water splitting, CO2 reduction and air purification. Many photocatalysts have been developed for the disintegration of water into CO2, H2O and other non-harmful substances. Compounds, with the help of O2, act as clean oxidants. Among various photocatalytic materials, the polymeric semiconducting photocatalysts show highly efficient photocatalytic performance for various photocatalytic applications. For example, oxygenated groups present on the surface of graphene oxide (GO) make it effective in the removal of pollutants such as phenol, chlorophenol and industrial dyes. In this chapter, we discussed various chemical methodologies, properties and photocatalytic applications of polymeric semiconductors (carbon nitride, C3N4), graphene and metal-organic framework (MOF)-based hybrid nanostructured photocatalysts for the water purification and the solar hydrogen production. Such efficient photocatalysts are expected to solve the issues of environmental remediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bivins AW, Sumner T, Kumpel E, Howard G, Cumming O, Ross I, Nelson K, Brown J (2017) Estimating infection risks and the global burden of diarrheal disease attributable to intermittent water supply using QMRA. Environ Sci Technol 51:7542–7551

    Article  CAS  Google Scholar 

  • Castillo A, Vall P, Baserba MG, Comas J, Poch M (2017) Selection of industrial (food, drink and milk sector) wastewater treatment technologies: a multi-criteria assessment. J Clean Prod 143:180–190

    Article  CAS  Google Scholar 

  • Chamorn M, Yasuyoshi H (2006) Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int J Food Microbiol 2:99–103

    Google Scholar 

  • Chandana L, Subrahmanyam C (2017) Non-thermal discharge plasma promoted redox transformation of arsenic (III) and chromium (VI) in an aqueous medium. Chem Eng J 329:211–219

    Article  CAS  Google Scholar 

  • Chen S, Wang LW (2012) Thermo-dynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666

    Article  CAS  Google Scholar 

  • Chen JF, Wang YU, Guo F, Wang XM, Zheng C (2000) Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Ind Eng Chem Res 39:948–954

    Article  CAS  Google Scholar 

  • Cheng CL, Sun DS, Chu WC, Tseng YH, Ho HC, Wang JB, Chung PH, Chen JH, Tsai PJ, Lin NT, Yu MS, Chang HH (2009) The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J Biomed Sci 16:7. (10 pgs)

    Article  Google Scholar 

  • Colmenares JC, Luque R (2014) Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev 43:765–778

    Article  CAS  Google Scholar 

  • Dai K, Lu L, Liu Q, Zhu G, Wei X, Bai J, Xuan L, Wang H (2014) Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications. Dalton Trans 43:6295–6299

    Article  CAS  Google Scholar 

  • Dasireddy VBCC, Likozar B (2017) Activation and decomposition of methane over cobalt-copper and iron-based heterogeneous catalysts for COx-free hydrogen and multi walled carbon nanotube production. Energy Technol 5:1344–1355

    Article  CAS  Google Scholar 

  • Duan J, Chen S, Jaroniec M, Qiao SZ (2015) Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9:931–940

    Article  CAS  Google Scholar 

  • Duffy EF, Al Touati F, Kehoe SC, McLoughlin OA, Gill LW, Gernjak W, Mc Guigan KG (2004) A novel TiO2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries. Sol Energy 77:649–655

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrogen Energ 32:2664–2672

    Article  CAS  Google Scholar 

  • Gillan EG (2000) Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem Mater 12:3906–3912

    Article  CAS  Google Scholar 

  • Han C, Chen Z, Zhang N, Colmenares JC, Xu Y-J (2015) Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv Funct Mater 25:221–229

    Article  CAS  Google Scholar 

  • Han Q, Wang B, Gao J, Cheng ZH, Zhao Y, Zhang ZP, Qu LT (2016) Atomically thin mesoporous nano mesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10:2745–2751

    Article  CAS  Google Scholar 

  • Han Q, Chen N, Zhang J, Qu L (2017) Graphene/graphitic carbon nitride hybrids for catalysis. Mater Horiz 4:832–850

    Article  CAS  Google Scholar 

  • Hathway T, Rockafellow EM, Jenks WS, Chul Oh Y (2009) Photocatalytic degradation using tungsten-modified TiO2 and visible light: kinetic and mechanistic effects using multiple catalyst doping strategies. J Photochem Photobiol A 207:197–203

    Article  CAS  Google Scholar 

  • Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2:207–210

    Article  CAS  Google Scholar 

  • Job WK, Kang HJ (2013) Polyacrylonitrile-TiO2 fibers for control of gaseous aromatic compounds. Ind Eng Chem Res 52:4475–4483

    Article  Google Scholar 

  • Kilmartin PA, Wright GA (2001) Photoeffects to characterise polypyrrole electrodes and bilayers with polyaniline. Electrochim Acta 46:2787–2794

    Article  CAS  Google Scholar 

  • Kim J, Sohn D, Sung Y, Kim ER (2003a) Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization. Synth Met 132:309–313

    Article  CAS  Google Scholar 

  • Kim B, Kim D, Cho D, Cho S (2003b) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52:277–281

    Article  CAS  Google Scholar 

  • Kochuveedu ST (2016) Photocatalytic and photoelectrochemical water splitting on TiO2 via photosensitization. J Nanomater. http://dx.doi.org/10.1155/2016/4073142

  • Komatsu T, Nakamura T (2001) Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides. J Mater Chem 11:474–478

    Article  CAS  Google Scholar 

  • Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9:3336–3344

    CAS  Google Scholar 

  • Li HY, Gan SY, Wang HY, Han DX, Niu L (2015) Intercorrelated superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv Mater 27:6906–6913

    Article  CAS  Google Scholar 

  • Liang Q, Jin J, Zhang M, Liu Q, Xu S, Yao C, Li Z (2017) Construction of mesoporous carbon nitride/binary metal sulfide heterojunction photocatalysts for enhanced degradation of pollution under visible light. Appl Catal B 218:545–554

    Article  CAS  Google Scholar 

  • Liao G, Chen S, Quan X, Yu H, Zhao H (2012) Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J Mater Chem 22:2721

    Article  CAS  Google Scholar 

  • Liu Q, Guo YR, Chen ZH, Zhang ZG, Fang XM (2016) Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Appl Catal B 183:231–241

    Article  CAS  Google Scholar 

  • Man MKL, Margiolakis A, Jones SD, Harada T, Wong EL, Krishna MBM, Madeo J, Winchester A, Lei S, Vajtai R, Ajayan PM, Dani KM (2017) Imaging the motion of electrons across semiconductor heterojunctions. Nat Nanotechnol 12:36–40

    Article  CAS  Google Scholar 

  • Miller DR, Wang J, Gillan EG (2002) Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J Mater Chem 12:2463–2469

    Article  CAS  Google Scholar 

  • Mohamed AA, EI-Sayed R, Osman T, Toprak M, Muhammed M, Uheida A (2016) Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ Res 145:18–25

    Article  CAS  Google Scholar 

  • Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  Google Scholar 

  • Pan X, Yang MQ, Tang ZR, Xu Y-J (2014) Noncovalently functionalized graphene-directed synthesis of ultralarge graphene-based TiO2 nanosheet composites: tunable morphology and photocatalytic applications. J Phys Chem C 118:27325–27335

    Article  CAS  Google Scholar 

  • Rajendra CP, Varsha K, Caroline SYL (2014) Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans 43:12514–12527

    Article  Google Scholar 

  • Ramirz KB, Kim D, Cho D, Cho S (2015) 4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts. J Environ Health Sci Eng 13:33. (10pgs)

    Article  Google Scholar 

  • Samsudin EM, Goh SN, Wu TY, Ling TT, Bee S, Hamid A, Juan JC (2015) Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malays 44:1011–1019

    Article  CAS  Google Scholar 

  • Shalom M, Gimenez S, Schipper F, Herraiz-Cardona I, Bisquert J, Antonietti M (2014) Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. Angew Chem Int Ed 53:3654–3658

    Article  CAS  Google Scholar 

  • Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749

    Article  Google Scholar 

  • Tan SN, Ge H (1996) Investigation into vapour-phase formation of polypyrrole. Polymer 37:965–968

    Article  CAS  Google Scholar 

  • Vachon DD, Angus RO, Lu FL, Nowak M, Liu ZX, Schaffer H (1987) Polyaniline is poly-para- phenyleneamineimine: proof of structure by synthesis. Synth Met 18:297–302

    Article  CAS  Google Scholar 

  • Vukmirovic N, Wang LW (2009) Electronic structure of disordered conjugated polymers: polythiophenes. J Phys Chem B 113:409–415

    Article  CAS  Google Scholar 

  • Wang J, Neoh KG, Kang ET (2004) Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin Solid Films 446:205–217

    Article  CAS  Google Scholar 

  • Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606

    Article  Google Scholar 

  • Wang S, Li D, Sun C, Yang S, Guan Y, He H (2014) Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl Catal B 144:885–892

    Article  CAS  Google Scholar 

  • Xu J, Hou J, Zhang S, Zhang R, Nie G, Pu S (2006) Electrosyntheses of high quality poly(5-methylindole) films in mixed electrolytes of boron trifluoride diethyl etherate and diethyl ether. Eur Polym J 42:1384–1395

    Article  CAS  Google Scholar 

  • Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    Article  CAS  Google Scholar 

  • Yang MQ, Xu YJ (2013) Selective photo redox using graphene-based composite photocatalysts. Phys Chem Chem Phys 15:19102–19118

    Article  CAS  Google Scholar 

  • Yang MQ, Xu YJ (2016) Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective. Nanoscale Horiz 1:185–200

    Article  CAS  Google Scholar 

  • Yang MQ, Zhang N, Pagliaro M, Xu YJ (2014) Artificial photosynthesis over graphene–semiconductor composites. Are we getting better? Chem Soc Rev 43:8240–8254

    Article  CAS  Google Scholar 

  • Yu Q, Guo S, Li X, Zhang M (2014) Template free fabrication of porous g-C3N4/graphene hybrid with enhanced photocatalytic capability under visible light. Mater Technol 29:172–178

    Article  CAS  Google Scholar 

  • Yuan L, Yang MQ, Xu YJ (2014) Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet–graphene (2D–2D) nanocomposite with enhanced visible light photoactivity. Nanoscale 6:6335–6345

    Article  CAS  Google Scholar 

  • Zhang J, Xiao FX, Xiao G, Liu B (2014) Self-assembly of a Ag nanoparticle-modified and graphene-wrapped TiO2 nanobelt ternary heterostructure: surface charge tuning toward efficient photocatalysis. Nanoscale 6:11293–11302

    Article  CAS  Google Scholar 

  • Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377

    Article  CAS  Google Scholar 

  • Zhao Y, Zhao F, Wang X, Xu C, Zhang Z, Shi G, Qu L (2014) Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew Chem Int Ed 53:13934–13939

    Article  CAS  Google Scholar 

  • Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Du A, Jaroniec M, Qiao SZ (2014) Hydrogen evolution by a metal-free electrocatalysts. Nat Commun 5:3783

    Article  Google Scholar 

  • Zheng Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed 54:52–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Kakarla, R.R., Reddy, C.V., Haque, E., Sadhu, V., Naveen, S. (2019). Polymeric Semiconductors as Efficient Photocatalysts for Water Purification and Solar Hydrogen Production. In: Inamuddin, Ahamed, M., Asiri, A., Lichtfouse, E. (eds) Nanophotocatalysis and Environmental Applications . Environmental Chemistry for a Sustainable World, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-04949-2_6

Download citation

Publish with us

Policies and ethics