Advertisement

Compressive Sensing-Based Optimal Design of an Emerging Optical Imager

  • Gang Liu
  • Desheng Wen
  • Zongxi SongEmail author
  • Zhixin Li
  • Weikang Zhang
  • Xin Wei
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 810)

Abstract

The emerging optical imager can greatly reduce system weight and size compared to conventional telescopes. The compressive sensing (CS) theory demonstrates that incomplete and noisy measurements may actually suffice for accurate reconstruction of compressible or sparse signals. In this paper, we propose an optimized design of the emerging optical imager based on compressive sensing theory. It simplifies data acquisition structure and reduces data transmission burden. moreover, the system robustness is improved.

Keywords

Optical instrument Interferometry Compressive sensing Photonic integrated circuit 

Notes

Acknowledgements

This work is supported by China Lunar Exploration Project (CLEP) and Youth Innovation Promotion Association, CAS.

References

  1. 1.
    Kendrick, R.L., Duncan, A., Ogden, C., Wilm, J., Stubbs, D.M., Thurman, S.T., Su, T., Scott, R.P., Yoo, S.: Flat-panel space-based space surveillance sensor. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (2013)Google Scholar
  2. 2.
    Fontaine, N.K., Scott, R.P., Zhou, L., Soares, F.M., Heritage, J., Yoo, S.: Real-time full-field arbitrary optical waveform measurement. Nat. Photonics 4(4), 248–254 (2010)CrossRefGoogle Scholar
  3. 3.
    Duncan, A., Kendrick, R., Thurman, S., Wuchenich, D., Scott, R.P., Yoo, S., Su, T., Yu, R., Ogden, C., Proiett, R.: Spider: next generation chip scale imaging sensor. In: Advanced Maui Optical and Space Surveillance Technologies Conference (2015)Google Scholar
  4. 4.
    Scott, R.P., Su, T., Ogden, C., Thurman, S.T., Kendrick, R.L., Duncan, A., Yu, R., Yoo, S.: Demonstration of a photonic integrated circuit for multi-baseline interferometric imaging. In: 2014 IEEE Photonics Conference (IPC), pp. 1–2. IEEE (2014)Google Scholar
  5. 5.
    Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)CrossRefGoogle Scholar
  6. 6.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Pearson, T., Readhead, A.: Image formation by self-calibration in radio astronomy. Annu. Rev. Astron. Astrophys. 22(1), 97–130 (1984)CrossRefGoogle Scholar
  8. 8.
    Haniff, C.: An introduction to the theory of interferometry. New Astron. Rev. 51(8), 565–575 (2007)CrossRefGoogle Scholar
  9. 9.
    Goodman, J.W.: Statistical Optics. Wiley (2000)Google Scholar
  10. 10.
    Guyon, O.: Wide field interferometric imaging with single-mode fibers. Astron. Astrophys. 387(1), 366–378 (2002)CrossRefGoogle Scholar
  11. 11.
    Zimmermann, L., Voigt, K., Winzer, G., Petermann, K., Weinert, C.M.: \(c\)-band optical 90\(^{\circ }\)-hybrids based on silicon-on-insulator 4 \(\times \) 4 waveguide couplers. IEEE Photonics Technol. Lett. 21(3), 143–145 (2009)Google Scholar
  12. 12.
    Hashimoto, T., Ogawa, I.: Optical hybrid integration using planar lightwave circuit platform. In: Proceedings of the SPIE, vol. 4652, pp. 58–67 (2002)Google Scholar
  13. 13.
    Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)CrossRefGoogle Scholar
  14. 14.
    Candès, E.J., et al.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452, Madrid, Spain (2006)Google Scholar
  15. 15.
    Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)Google Scholar
  17. 17.
    Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9(3), 317–334 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)CrossRefGoogle Scholar
  24. 24.
    Candes, E., Romberg, J.: l1-magic: recovery of sparse signals via convex programming, vol. 4, p. 14 (2005). www.acm.caltech.edu/l1magic/downloads/l1magic.pdf
  25. 25.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gang Liu
    • 1
    • 2
  • Desheng Wen
    • 1
  • Zongxi Song
    • 1
    Email author
  • Zhixin Li
    • 1
    • 2
  • Weikang Zhang
    • 1
    • 2
  • Xin Wei
    • 1
    • 2
  1. 1.Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of SciencesXi’anChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations