Advertisement

Pedestrian Attribute Recognition with Occlusion in Low Resolution Surveillance Scenarios

  • Yuan Zhang
  • Qiong WangEmail author
  • Zhenmin Tang
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 810)

Abstract

In surveillance scenarios, the pedestrian images are often facing poor resolution problems or the images are often suffered the occlusion problems. These problems make pedestrian attribute recognition more difficult. In order to solve this problem, we propose an improved pedestrian attribute recognition method based on hand-crafted feature. In this method, we use Patch Match algorithm as pedestrian image preprocessing to enhance the pedestrian images. Experiments show that this method proposed performs excellent when the pedestrian images suffer occlusion problem and the method is robust to low resolution problem.

Keywords

Pedestrian attribute recognition Image enhancing Patch match 

Notes

Acknowledgements

This research was funded by National Science and Technology Major Project (Grant number 2015ZX01041101), Jiangsu International Science and Technology Cooperation Project (Grant number BZ2017064). This research was also funded by China Scholarship Council and Jiangsu Collaborative Innovation Center of Social Safety Science and Technology.

References

  1. 1.
    Lu, H., Li, Y., Mu, S., et al.: Motor Anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J. (2018)Google Scholar
  2. 2.
    Lu, H., Li, Y., Chen, M., et al.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. (2017)Google Scholar
  3. 3.
    Ferrari, V., Zisserman, A.: Learning visual attributes. In: Proceedings of NIPS (2008)Google Scholar
  4. 4.
    Siddiquie, B., Feris, R.S., Davis, L.S.: Image ranking and retrieval based on multi-attribute queries. In: Proceedings of CVPR (2011)Google Scholar
  5. 5.
    Zhang, N., Paluri, M., Ranzato, M., Darrell, T., Bourdev, L.: Panda: pose aligned networks for deep attribute modeling. In: Proceedings of CVPR (2014)Google Scholar
  6. 6.
    Serikawa, S., Lu, H.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)CrossRefGoogle Scholar
  7. 7.
    Lu, H., Li, B., Zhu, J., et al.: Wound intensity correction and segmentation with Convolutional neural networks. Concurr. Comput. Pract. Exp. (2017)Google Scholar
  8. 8.
    Layne, R., Hospedales, T.M., Gong, S., Mary, Q.: Person re-identification by attributes. In: Proceedings of BMVC (2012)Google Scholar
  9. 9.
    Zhu, J., Liao, S., Lei, Z., Yi, D., Li, S.Z.: Pedestrian attribute classification in surveillance: database and evaluation. In: Proceedings of ICCV Workshops (2013)Google Scholar
  10. 10.
    Deng, Y., Luo, P., Loy, C.C., Tang, X.: Pedestrian attribute recognition at far distance. In: Proceedings of ACM Multimedia (2014)Google Scholar
  11. 11.
    Sun, Z., Yuan, X., Bebis, G., et al.: Neural-network-based gender classification using genetic search for eigen-feature selection. In: Proceedings of the 2002 International Joint Conference on Neural Networks, pp. 2433–2438 (2002)Google Scholar
  12. 12.
    Shakhnarovich, G., Viola, P.A., Moghaddam, B.: A unified learning framework for real time face detection & classification. In: International Conference on Automatic Face and Gesture Recognition, pp. 14–21 (2002)Google Scholar
  13. 13.
    Lian, H.C., Lu, B.L., Takikawa, E., et al.: Gender recognition using a min-max modular support vector machine. In: Advances in Natural Computation, pp. 438–441. Springer, Berlin, Heidelberg (2005)Google Scholar
  14. 14.
    Jain, A., Huang, J., Fang, S.: Gender identification using frontal facial images. In: IEEE International Conference on Multimedia and Expo, 2005, ICME 2005, p. 4. IEEE (2005)Google Scholar
  15. 15.
    Yacoob, Y., Davis, L.S.: Detection and analysis of hair. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1164–1169 (2006)Google Scholar
  16. 16.
    Kozlowski, L.T., Cutting, J.E.: Recognizing the sex of a walker from a dynamic point-light display. Atten. Percept. Psychophys. 21(6), 575–580 (1977)CrossRefGoogle Scholar
  17. 17.
    Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE TPAMI 24 (2002)Google Scholar
  18. 18.
    Chen, H., Xu, Z.J., Liu, Z.Q., et al.: Composite templates for cloth modeling and sketching. In: CVPR, New York, NY, USA, pp. 943–950 (2006)Google Scholar
  19. 19.
    Gallagher, A.C., Chen, T.: Clothing cosegmentation for recognizing people. In: Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, pp. 1–8 (2008)Google Scholar
  20. 20.
    Bourdev, L., Maji, S., Malik, J.: Describing people: poselet-based attribute classification. In: 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, pp. 1543–1550 (2011)Google Scholar
  21. 21.
    Chen, H., Gallagher, A., Girod, B.: Describing clothing by semantic attributes. In: Computer Vision ECCV 2012, pp. 609–623. Springer, Berlin, Heidelberg (2012)Google Scholar
  22. 22.
    Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K., et al.: Large scale distributed deep networks. In: Advances in Neural Information Processing Systems, pp. 1223–1231 (2012)Google Scholar
  23. 23.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image net classification with deep convolutional neural networks. In: NIPS (2012)Google Scholar
  24. 24.
    Fabbri, M., Calderara, S., Cucchiara, R.: Generative adversarial models for people attribute recognition in surveillance. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6Google Scholar
  25. 25.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: PatchMatch: a randomized correspondence algorithm for structural image editing. TOG, 28(3), 24:1–24:11 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Nanjing University of Science and TechnologyNanjingChina

Personalised recommendations