Advertisement

Distortion Correction Method of Zoom Lens Based on Vanishing Point Geometric Constraint

  • Zhenmin ZhuEmail author
  • Quanxin Liu
  • Xinyun Wang
  • Shuang Pei
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 810)

Abstract

In order to solve the problem that the nonlinear distortion of the zoom lens varies with the focal length changes, a fast correction method for zoom lens based on the minimum fitting error of vanishing points is proposed. Firstly, based on the radial distortion model, the equation between the vanishing point and the radial distortion coefficient is established according to the geometric constraint of the vanishing point. And then, according to the principle of the deviation error minimization, use the least squares to fit the equation of straight line of the corrected points. Finally, the variation of distortion parameters with focal length is analyzed, the distortion parameter table between distortion parameter and focal length and the empirical formula of fitting are established. The results of images correction show that the proposed method can effectively correct the nonlinear distortion of zoom lens.

Keywords

Distortion correction Zoom lens Minimum fitting error Vanishing points Radial distortion model 

Notes

Acknowledgements

This research is supported by the Program of Jiangxi Outstanding Youth Talent Assistance (Grant No. 20162BCB23047), and Science and Technology Pillar Program of Jiangxi Province (Grant No. 20151BBE50116).

References

  1. 1.
    Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23(2), 368–375 (2018)CrossRefGoogle Scholar
  2. 2.
    Lu, H., Li, Y., Mu S., Wang, D., Kim, H., Serikawa, S.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J., 1–8 (2017)Google Scholar
  3. 3.
    Wang, Z., Mills, J., Xiao, W., Huang, R., Zheng, S., Li, Z.: A flexible, generic photogrammetric approach to zoom lens calibration. Remote. Sens. 9(3), 1–15 (2017)Google Scholar
  4. 4.
    Wu, B., Hu, H., Zhu, Q., Zhang, Y.: A flexible method for zoom lens calibration and modeling using a planar checkerboard. Photogramm. Eng. Remote. Sens. 79(6), 555–571 (2013)CrossRefGoogle Scholar
  5. 5.
    Fang, W., Zheng, L.: Distortion correction modeling method for zoom lens cameras with bundle adjustment. J. Opt. Soc. Korea 20(1), 140–149 (2016)CrossRefGoogle Scholar
  6. 6.
    Zhou, Q., Liu, J.: Rapid nonlinear distortion correction of aerial optical zoom lens system. Acta Optica Sinica 35(4), 0411001 (2015)CrossRefGoogle Scholar
  7. 7.
    Yao, N., Lin, Z., Ren, C., Yang, K.: A distortion model suitable for nonliner distortion correction of digital video camera. Laser Optoelectron. Prog. 51(2), 022204 (2014)CrossRefGoogle Scholar
  8. 8.
    Lu, H., Li, B., Zhu, J., Li, Y., Li, Y., Xu, X., He, L., Li, X., Li, J., Serikawa, S.: Wound intensity correction and segmentation with convolutional neural networks. Concurr. Comput. Pract. Exp. 29(6), 1–10 (2016)Google Scholar
  9. 9.
    Lu, H., Li, Y., Uemura, T., Kim, H., Serikawa, S.: Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur. Gener. Comput. Syst., 1–19 (2018)Google Scholar
  10. 10.
    Serikawa, S., Lu, H.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)CrossRefGoogle Scholar
  11. 11.
    Shin, H., Oh, J., Sohn, K.: Automatic radial distortion correction in zoom lens video camera. J. Electron. Imaging 19(4), 2843–2850 (2010)Google Scholar
  12. 12.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (2003)CrossRefGoogle Scholar
  13. 13.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Comput. Soc. 22(11), 1330–1334 (2000)Google Scholar
  14. 14.
    Huang, J., Wang, Z., Xue, Q., Gao, J.: Calibration of camera with rational function lens distortion model. Chin. J. Lasers 41(5), 0508001 (2014)CrossRefGoogle Scholar
  15. 15.
    Liu, D., Liu, X., Wang, M.: Automatic approach of lens radial distortion correction based on vanishing points. J. Image Graph. 19(3), 407–413 (2014)Google Scholar
  16. 16.
    Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. I-125–I-132. IEEE (2001)Google Scholar
  17. 17.
    Zhou, Q., Liu, J.: Rapid nonlinear distortion correction of aerial optical zoom lens system. Acta Optica Sinica 35(4), 0411001 (2015)CrossRefGoogle Scholar
  18. 18.
    Zheng, S., Wang, Z., Huang, R.: Zoom lens calibration with zoom- and focus-related intrinsic parameters applied to bundle adjustment. ISPRS J. Photogramm Remote. Sens. 102, 62–72 (2015)CrossRefGoogle Scholar
  19. 19.
    Zhu, Z., Liu, Q., Song, R., Chen, S.: The sparse least square support vector regression for estimating illumination chromaticity. Color Res Appl. 43(4), 517–526 (2018)CrossRefGoogle Scholar
  20. 20.
    Chen, T., Ma, Z., Wu, X., Wu, D.: Robust correction method for camera lens distortion. Control. Decis. 28(3), 461–465 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zhenmin Zhu
    • 1
    Email author
  • Quanxin Liu
    • 1
  • Xinyun Wang
    • 1
  • Shuang Pei
    • 1
  1. 1.School of Electrical and Automation EngineeringEast China Jiaotong UniversityNanchangChina

Personalised recommendations