Advertisement

Improved Image Enhancement Method Based on Retinex Algorithm

  • Tingting ZhangEmail author
  • Weiduo Zhu
  • Yujie Li
  • Yun Li
  • Bin Li
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 810)

Abstract

In order to improve the visibility of foggy images, this paper uses two models to iteratively refine the image. In the first model, the image is first enhanced by histogram equalization and then enhanced by the Retinex algorithm. In the second model, the image is firstly enhanced with the Retinex algorithm, and then the gamma correction is used to adjust the brightness. From a theoretical analysis and practical experiments, this method improves the sharpness of the image while enhancing the image detail information and restoring the image color.

Keywords

Foggy image Iterative refinement Histogram equalization Retinex Gamma correction 

References

  1. 1.
    Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. IJCV 48(3), 233–254 (2002)Google Scholar
  2. 2.
    Lu, H., Li, Y., Uemura, T., Kim, H., Serikawa, S.: Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur. Gener. Comput. Syst. 82, 142–148 (2018)CrossRefGoogle Scholar
  3. 3.
    Li, Y., Lu, H., Li, K., Kim, H., Serikawa, S.: Non-uniform de-scattering and de-blurring of underwater images. Mob. Netw. Appl. 23, 352–362 (2018)CrossRefGoogle Scholar
  4. 4.
    Li, Y., Lu, H., Li, J., Li, X., Li, Y., Serikawa, S.: Underwater image de-scattering and classification by deep neural network. Comput. Electr. Eng. 54, 68–77 (2016)CrossRefGoogle Scholar
  5. 5.
    Lu, H., Li, Y., Zhang, L., Serikawa, S.: Contrast enhancement for images in turbid water. J. Opt. Soc. Am. A 32(5), 886–893 (2015)CrossRefGoogle Scholar
  6. 6.
    Acharya, T., Ray, A.K.: Image Processing—Principles and Applications. Wiley, New York (2005)Google Scholar
  7. 7.
    Fan, T., Li, C., Ma, X., Chen, Z., Zhang, X., Chen, L.: An improved single image defogging method based on retinex. In: 2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, pp. 410–413 (2017)Google Scholar
  8. 8.
    Jobson, D.J., Rahman, Z.U.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–454 (1997)Google Scholar
  9. 9.
    Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010)Google Scholar
  10. 10.
    Arici, T., Dikbas, S., Altunbasak, Y.: A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18(9), 1921–1935 (2009)Google Scholar
  11. 11.
    Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement with adaptive gamma correction. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)Google Scholar
  12. 12.
    Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2016)CrossRefGoogle Scholar
  13. 13.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, pp. 72–77. 3rd. edn. Publishing House of Electronics Industry (2017)Google Scholar
  14. 14.
    Cao, G., Zhao, Y., Ni, R., Li, X.: Contrast enhancement-based forensics in digital images. IEEE Trans. Info. Forensics Secur. 9(3), 515–525 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tingting Zhang
    • 1
    Email author
  • Weiduo Zhu
    • 1
  • Yujie Li
    • 1
  • Yun Li
    • 1
  • Bin Li
    • 1
  1. 1.School of Information EngineeringYangzhou UniversityYangzhouChina

Personalised recommendations