Advertisement

Silhouette Photo Style Transfer

  • Henan Li
  • Lili WanEmail author
  • Shenghui Wang
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 810)

Abstract

Silhouette photography is popular among photographers. However, it is hard for ordinary users to shoot this kind of photos because of the limitations of cameras, weather and skills. In this work, we propose an automatic photo style transfer approach that can generate realistic silhouette images. First we present a sky segmentation method to divide an input image into an object foreground and a sky background. Then, for the background, we implement a statistic color transfer method using a specified sky photo. Finally, in order to generate natural results, we develop an adaptive approach to adjust the color of the object foreground considering the ambient color computed from the stylized background. The experimental results show that our methods can achieve satisfactory sky segmentation results and generate aesthetically pleasing silhouette photos.

Keywords

Silhouette photography Photo style transfer Sky segmentation Color transfer 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61572064 and 61672089).

References

  1. 1.
    Reinhard, E., Adhikhmin, M., Gooch, B., et al.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)CrossRefGoogle Scholar
  2. 2.
    Pitié, F., Kokaram, A.C., Dahyot, R.: N-dimensional probability density function transfer and its application to color transfer. In: Tenth IEEE International Conference on Computer Vision, vol. 2, pp. 1434–1439 (2005)Google Scholar
  3. 3.
    Pitié, F., Kokaram, A.: The linear Monge-Kantorovitch linear color mapping for example-based color transfer. In: European Conference on Visual Media Production, pp. 1–9 (2008)Google Scholar
  4. 4.
    Lee, J.Y., Sunkavalli, K., Lin, Z., et al.: Automatic Content-aware color and tone stylization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2470–2478 (2016)Google Scholar
  5. 5.
    Lu, H., Li, Y., Mu, S., Wang, D., et al.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J. PP(99), 1–1 (2017)Google Scholar
  6. 6.
    Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. In: Mobile Networks and Applications, pp. 1–8 (2017)Google Scholar
  7. 7.
    Gatys, L.A., Ecker, A.S., et al.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)Google Scholar
  8. 8.
    Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6997–7005 (2017)Google Scholar
  9. 9.
    Tao, L., Yuan, L., Sun, J.: SkyFinder: attribute-based sky image search. ACM Trans. Graph. 28(3), 68 (2009)CrossRefGoogle Scholar
  10. 10.
    Tsai, Y.H., Shen, H., Lin, Z., Sunkavalli, K., Yang, M.H.: Sky is not the limit: semantic-aware sky replacement. ACM Trans. Graph. 35(4), 149 (2016)CrossRefGoogle Scholar
  11. 11.
    Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: GrabCut in One Cut. In: IEEE International Conference on Computer Vision, vol. 2013, pp. 1769–1776 (2013)Google Scholar
  12. 12.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)Google Scholar
  13. 13.
    Cheng, M.M., Prisacariu, V.A., Zheng, S., Torr, P.H.S., et al.: DenseCut: densely connected CRFs for realtime GrabCut. Comput. Graph. Forum 34(7), 193–201 (2015)CrossRefGoogle Scholar
  14. 14.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)Google Scholar
  15. 15.
    Lu, H., Li, B., Zhu, J., Li, Y., Li, Y., Xu, X., et al.: Wound intensity correction and segmentation with convolutional neural networks. Concurr. Comput. Pract. Exp. 29(6), e3927 (2017)CrossRefGoogle Scholar
  16. 16.
    Kim, J., Grauman, K.: Boundary preserving dense local regions. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 37, pp. 1553–1560 (2011)Google Scholar
  17. 17.
    Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Trans. Graph. 30(6), 174 (2011)Google Scholar
  18. 18.
    Zitnick, C.L.: Structured forests for fast edge detection. In: IEEE International Conference on Computer Vision, pp. 1841–1848 (2014)Google Scholar
  19. 19.
    Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)CrossRefGoogle Scholar
  20. 20.
    Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011)Google Scholar
  21. 21.
    Serikawa, S., Lu, H.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)CrossRefGoogle Scholar
  22. 22.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1397–1409 (2013)CrossRefGoogle Scholar
  23. 23.
    Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Information Science, Beijing Jiaotong UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Advanced Information Science and Network TechnologyBeijingPeople’s Republic of China

Personalised recommendations