Advertisement

An Improved Unsupervised Band Selection of Hyperspectral Images Based on Sparse Representation

  • Fei LiEmail author
  • Pingping Zhang
  • Huchuan Lu
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 810)

Abstract

Hyperspectral images have far more spectral bands than ordinary multispectral images. Rich band information provides more favorable conditions for the tremendous applications as well as many problems such as the curse of dimensionality. Band selection is an effective method to reduce the spectral dimension which is one of popular topics in hyperspectral remote sensing. Motivated by previous sparse representation method, we present a novel framework for band selection based on multi-dictionary sparse representation (MDSR). By obtaining the sparse solutions for each band vector and the corresponding dictionary, the contribution of each band to the raw image is derived. In terms of contribution, the appropriate band subset is selected. Five state-of-art band selection methods are compared with the MDSR on three widely used hyperspectral datasets. Experimental results show that MDSR achieves marginally better performance in hyperspectral image classification, and better performance in average correlation coefficient and computational time.

Keywords

Band selection Hyperspectral images Sparse representation Classification 

References

  1. 1.
    Chang, C.I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Plenum Publishing Co. (2003)Google Scholar
  2. 2.
    Hughes, G.P.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)CrossRefGoogle Scholar
  3. 3.
    RichardErnest: Adaptive Control Processes: A Guided Tour. The University Press (1961)Google Scholar
  4. 4.
    Bo, C., Lu, H., Wang, D.: Spectral-spatial k-nearest neighbor approach for hyperspectral image classification. Multimed. Tools Appl. 77(9), 1–18 (2018)CrossRefGoogle Scholar
  5. 5.
    Li, P., Wang, D., Wang, L., Lu, H.: Deep visual tracking: review and experimental comparison. Pattern Recogn. (2017)Google Scholar
  6. 6.
    Jia, X., Kuo, B.-C., Crawford, M.M.: Feature mining for hyperspectral image classification. Proc. IEEE 101(3), 676–697 (2013)CrossRefGoogle Scholar
  7. 7.
    Li, S., Qi, H.: Sparse representation based band selection for hyperspectral images. In: IEEE International Conference on Image Processing, pp. 2693–2696 (2011)Google Scholar
  8. 8.
    Du, Q., Bioucas-Dias, J.M., Plaza, A.: Hyperspectral band selection using a collaborative sparse model. In: Geoscience and Remote Sensing Symposium, pp. 3054–3057 (2012)Google Scholar
  9. 9.
    Chien, H.C., Lai, C.H., Liu, K.H.: Unsupervised band selection based on group-based sparse representation. In: Asian Conference on Computer Vision, pp. 389–401 (2016)Google Scholar
  10. 10.
    Sun, K., Geng, X., Ji, L.: A new sparsity-based band selection method for target detection of hyperspectral image. IEEE Geosci. Remote Sens. Lett. 12(2), 329–333 (2015)CrossRefGoogle Scholar
  11. 11.
    Sun, W., Jiang, M., Li, W., Liu, Y.: A symmetric sparse representation based band selection method for hyperspectral imagery classification. Remote Sens. 8(3), 238 (2016)CrossRefGoogle Scholar
  12. 12.
    Bo, C., Lu, H., Wang, D.: Hyperspectral image classification via JCR and SVM models with decision fusion. IEEE Geosci. Remote Sens. Lett. 13(2), 177–181 (2016)CrossRefGoogle Scholar
  13. 13.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)CrossRefGoogle Scholar
  15. 15.
    He, L., Ruan, W., Li, Y.: Sparse representation based hyperspectral imagery classification via expanded dictionary. In: Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4 (2012)Google Scholar
  16. 16.
    Chen, Y., Nasrabadi, N.M., Tran, T.D.: Sparse representation for target detection in hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 5(3), 629–640 (2011)CrossRefGoogle Scholar
  17. 17.
    Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 40–44 (1993)Google Scholar
  18. 18.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chang, C.-I., Du, Q., Sun, T.-L., Althouse, M.L.: A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 37(6), 2631–2641 (1999)CrossRefGoogle Scholar
  21. 21.
    Yuan, Y., Zhu, G., Wang, Q.: Hyperspectral band selection by multitask sparsity pursuit. IEEE Trans. Geosci. Remote Sens. 53(2), 631–644 (2014)CrossRefGoogle Scholar
  22. 22.
    Du, Q., Yang, H.: Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. Lett. 5(4), 564–568 (2008)CrossRefGoogle Scholar
  23. 23.
    Yang, H., Du, Q., Chen, G.: Unsupervised hyperspectral band selection using graphics processing units. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(3), 660–668 (2011)CrossRefGoogle Scholar
  24. 24.
    Martınez-Usó, A., Pla, F., Sotoca, J.M., Garcıa-Sevilla, P.: Clustering-based multispectral band selection using mutual information. In: International Conference on Pattern Recognition (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Engineering Training CenterShenyang Aerospace UniversityShenyangChina
  2. 2.School of Information and Communication EngineeringDalian University of TechnologyDalianChina

Personalised recommendations