Skip to main content

Energy-Aware Real-Time Routing for Large-Scale Industrial Internet of Things

  • Chapter
  • First Online:
Industrial Sensors and Controls in Communication Networks

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

This chapter proposes a routing scheme that enhances energy consumption and end-to-end delay for large-scale Industrial Internet of Things (IIoT) systems based on IEEE 802.15.4a MAC . In the current IIoT, a larger scale and complex deployment has been a noticeable obstacle for minimizing power consumption and routing on real time. Thus, the proposed algorithm is targeted at large-scale systems where data are aggregated through different clusters on their way to the sink. Moreover, a hierarchical system framework is employed to promote scalability of IIoT elements. By estimating the residual energy and hop counts for each path, the data can be forwarded to the destination through the optimal path. Simulation results show that the scheme can reduce the energy consumption and end-to-end delay effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu LD, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Industr Inf 10(4):2233–2243

    Article  Google Scholar 

  2. Chao H, Chen Y, Wu J (2011) Power saving for machine to machine communications in cellular networks. In: 2011 IEEE GLOBECOM workshops (GC Wkshps), Dec 2011, pp 389–393

    Google Scholar 

  3. Dhondge K, Shorey R, Tew J (2016) HOLA: heuristic and opportunistic link selection algorithm for energy efficiency in industrial internet of things (IIoT) systems. In: 2016 8th international conference on communication systems and networks (COMSNETS), Jan 2016, pp 1–6

    Google Scholar 

  4. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805

    Article  MATH  Google Scholar 

  5. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376

    Google Scholar 

  6. Li S, Xu LD, Zhao S (2015) The internet of things: a survey. Inf Syst Front 17(2):243–259

    Article  Google Scholar 

  7. Wang K, Wang Y, Sun Y, Guo S, Wu J (2016) Green industrial internet of things architecture: an energy-efficient perspective. IEEE Commun Mag 54(12):48–54

    Article  Google Scholar 

  8. Quang PTA, Kim D-S (2015) Clustering algorithm of hierarchical structures in large-scale wireless sensor and actuator networks. J Commun Netw 17(5):473–481

    Article  Google Scholar 

  9. Nessa A, Kadoch M, Hu R, Rong B (2012) Towards reliable cooperative communications in clustered ad hoc networks. In: Global communications conference (GLOBECOM), 2012 IEEE, Dec 2012, pp 4090–4095

    Google Scholar 

  10. Vakil S, Dong M, Liang B (2010) Effect of cluster size selection on the throughput of multi-hop cooperative relay. In: Vehicular technology conference fall (VTC 2010-Fall), 2010 IEEE 72nd, Sept 2010, pp 1–5

    Google Scholar 

  11. Liu L, Hua C, Chen C, Guan X (2015) Relay selection for three-stage relaying scheme in clustered wireless networks. IEEE Trans Veh Technol 64(6):2398–2408

    Article  Google Scholar 

  12. Palattella MR, Accettura N, Vilajosana X, Watteyne T, Grieco LA, Boggia G, Dohler M (2013) Standardized protocol stack for the internet of (important) things. IEEE Commun Surv Tutorials 15(3):1389–1406. Third 2013

    Google Scholar 

  13. Agha KA, Bertin MH, Dang T, Guitton A, Minet P, Val T, Viollet JB (2009) Which wireless technology for industrial wireless sensor networks? The development of OCARI technology. IEEE Trans Industr Electron 56(10):4266–4278

    Article  Google Scholar 

  14. Silva FA (2014) Industrial wireless sensor networks: applications, protocols, and standards [book news]. IEEE Ind Electron Mag 8(4):67–68

    Article  Google Scholar 

  15. Civerchia F, Bocchino S, Salvadori C, Rossi E, Maggiani L, Petracca M (2017) Industrial internet of things monitoring solution for advanced predictive maintenance applications. J Ind Inf Integr

    Google Scholar 

  16. Kruger CP, Hancke GP (2014) Implementing the internet of things vision in industrial wireless sensor networks. In: 12th IEEE international conference on industrial informatics (INDIN) 2014, July 2014, pp 627–632

    Google Scholar 

  17. Zhang D, Zhu Y, Zhao C, Dai W (2012) A new constructing approach for a weighted topology of wireless sensor networks based on local-world theory for the internet of things (IOT). Comput Math Appl 64(5):1044–1055 (Advanced Technologies in Computer, Consumer and Control)

    Google Scholar 

  18. Zhang D, Wang X, Song X, Zhang T, Zhu Y (2015) A new clustering routing method based on PECE for WSN. EURASIP J Wirel Commun Netw 2015(1):162

    Article  Google Scholar 

  19. Zhang D, Zheng K, Zhang T, Wang X (2015) A novel multicast routing method with minimum transmission for WSN of cloud computing service. Soft Comput 19(7):1817–1827

    Article  Google Scholar 

  20. Zhang D, Li G, Zheng K, Ming X, Pan ZH (2014) An energy balanced routing method based on forward-aware factor for wireless sensor networks. IEEE Trans Industr Inf 10(1):766–773

    Article  Google Scholar 

  21. Laha A, Cao X, Shen W, Tian X, Cheng Y (2015) An energy efficient routing protocol for device-to-device based multihop smartphone networks. In: 2015 IEEE international conference on communications (ICC), June 2015, pp 5448–5453

    Google Scholar 

  22. Zhang Y, He S, Chen J (2016) Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. IEEE/ACM Trans Netw 24(3):1632–1646

    Article  Google Scholar 

  23. Ben Arbia D, Alam MM, Attia R, Ben Hamida E (2017) ORACE-Net: a novel multi-hop body-to-body routing protocol for public safety networks. Peer-to-Peer Netw Appl 10(3):726–749

    Article  Google Scholar 

  24. Huang J, Meng Y, Gong X, Liu Y, Duan Q (2014) A novel deployment scheme for green internet of things. IEEE Internet Things J 1(2):196–205

    Article  Google Scholar 

  25. Ben Arbia D, Alam M, Kadri A, Ben Hamida E, Attia R (2017) Enhanced IoT-based end-to-end emergency and disaster relief system. J Sens Actuator Netw 6(3):19

    Article  Google Scholar 

  26. Heinzelman W, Chandrakasan A, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1(4):660–670

    Article  Google Scholar 

  27. Long NB, Nhon T, Kim DS (2016) Rate-estimation-based relay selection scheme for large-scale wireless networks. IET Commun 10(12):1501–1507

    Article  Google Scholar 

  28. Son ND, Tan DD, Kim D-S (2012) Backoff algorithm for time critical sporadic data in industrial wireless sensor networks. In: International conference on advanced technologies for communications (ATC), 2012, Oct 2012, pp 255–258

    Google Scholar 

  29. Tavakoli H, Miic J, Naderi M, Miic V (2013) Energy-efficient clustering in IEEE 802.15.4 wireless sensor networks. In: 33rd IEEE international conference on distributed computing systems workshops (ICDCSW), July 2013, pp 262–267

    Google Scholar 

  30. Anastasi G, Conti M, Di Francesco M (2011) A comprehensive analysis of the MAC unreliability problem in IEEE 802.15.4 wireless sensor networks. IEEE Trans Industr Inf 7(1):52–65

    Article  Google Scholar 

  31. Quang PTA, Kim D-S (2014) Throughput-aware routing for industrial sensor networks: application to ISA100.11a. IEEE Trans Industr Inf 10(1):351–363

    Article  Google Scholar 

  32. Karapistoli E, Pavlidou F-N, Gragopoulos I, Tsetsinas I (2010) An overview of the IEEE 802.15.4a standard. IEEE Commun Mag 48(1):47–53

    Article  Google Scholar 

  33. Chen D, Nixon M, Mok A (2010) WirelessHART: real-time mesh network for industrial automation, 1st edn. Springer Publishing Company, Incorporated

    Google Scholar 

  34. Yang D, Gidlund M, Shen W, Xu Y, Zhang T, Zhang H (2013) CCA embedded TDMA enabling acyclic traffic in industrial wireless sensor networks. Ad Hoc Netw 11(3):1105–1121

    Article  Google Scholar 

  35. Yang Y, Cao S (2014) Multiplex TDMA link assignment with varying number of sensors in industrial wireless sensor networks. In: 2014 international conference on identification, information and knowledge in the internet of things, Oct 2014, pp 242–247

    Google Scholar 

  36. Zhai C, Zou Z, Chen Q, Xu L, Zheng L-R, Tenhunen H (2016) Delay-aware and reliability-aware contention-free MF-TDMA protocol for automated RFID monitoring in industrial IoT. J Ind Inf Integr 3:8–19

    Google Scholar 

  37. Pielli C, Biason A, Zanella A, Zorzi M (2016) Joint optimization of energy efficiency and data compression in TDMA-based medium access control for the IoT. In: 2016 IEEE GLOBECOM workshops (GC Wkshps), Dec 2016, pp 1–6

    Google Scholar 

  38. Yoo S, Chong PK, Kim D, Doh Y, Pham ML, Choi E, Huh J (2010) Guaranteeing real-time services for industrial wireless sensor networks with IEEE 802.15.4. IEEE Trans Ind Electron 57(11):3868–3876

    Google Scholar 

  39. Tang C, Song L, Balasubramani J, Wu S, Biaz S, Yang Q, Wang H (2014) Comparative investigation on CSMA/CA-based opportunistic random access for internet of things. IEEE Internet Things J 1(2):171–179

    Article  Google Scholar 

  40. Du W, Navarro D, Mieyeville F (2015) Performance evaluation of IEEE 802.15.4 sensor networks in industrial applications. Int J Commun Syst 28(10):1657–1674

    Google Scholar 

  41. Anastasi G, Conti M, Francesco MD, Neri V (2010) Reliability and energy efficiency in multi-hop IEEE 802.15.4/ZigBee wireless sensor networks. In: 2010 IEEE symposium on computers and communications (ISCC), June 2010, pp 336–341

    Google Scholar 

  42. Chang J-Y (2015) A distributed cluster computing energy-efficient routing scheme for internet of things systems. Wirel Pers Commun 82(2):757–776

    Article  Google Scholar 

  43. Amgoth T, Jana PK (2015) Energy-aware routing algorithm for wireless sensor networks. Comput Electr Eng 41:357–367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Seong Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, DS., Tran-Dang, H. (2019). Energy-Aware Real-Time Routing for Large-Scale Industrial Internet of Things. In: Industrial Sensors and Controls in Communication Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-04927-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04927-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04926-3

  • Online ISBN: 978-3-030-04927-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics