Skip to main content

Evaluation of the Spectral Element Dynamic Model for LES on Unstructured, Deformed Meshes

  • Conference paper
  • First Online:
Direct and Large-Eddy Simulation XI

Part of the book series: ERCOFTAC Series ((ERCO,volume 25))

  • 1658 Accesses

Abstract

Discontinuous finite element methods (DFEM) such as the discontinuous Galerkin (DG) (Cockburn et al, Discontinuous Galerkin methods: theory, computation, and applications. Springer, Berlin, 2000), [1] or the spectral difference (SD) (Kopriva and Kolias, J Comput Phys 125(1):244–261, 1996), [7], (Liu et al, J Comput Phys 216(2):780–801, 2006), [9], (Wang et al, J Sci Comput 32(1):45–71, 2007), [21] methods show a strong potential for the direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent flows on realistic geometries. These methods are characterized by a rather peculiar mix of features, such as their high-orders of accuracy, the ability to handle unstructured meshes, curved boundary elements and the compactness of the stencil, which allows for optimal parallelism. The extremely low level of numerical dissipation which can be achieved when high-orders are selected, and the consequent significant increase in resolving power, make DFEM particularly well suited for LES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cockburn, B., Karniadakis, G., Shu, C. (eds.): Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Chapelier, J.B., De La Llave Plata, M., Lamballais, E.: Comput. Meth. Appl. Mech. Eng. 307, 275–299 (2016)

    Google Scholar 

  3. Chapelier, J.B., Lodato, G.: J. Comput. Phys. 321, 279–302 (2016)

    Google Scholar 

  4. Chapelier, J.B., Lodato, G., Jameson, A.: Comput. Fluids 139, 261–280 (2016)

    Google Scholar 

  5. Erlebacher, G., Hussaini, M., Speziale, C., Zang, T.: J. Fluid Mech. 238, 155–185 (1992)

    Article  Google Scholar 

  6. Konstantinidis, E., Balabani, S., Yianneskis, M.: Exp. Fluids 39(1), 38–47 (2005)

    Google Scholar 

  7. Kopriva, D., Kolias, J.: J. Comput. Phys. 125(1), 244–261 (1996)

    Google Scholar 

  8. Lesieur M., Métais O., Comte P.: Large-Eddy Simulations of Turbulence. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  9. Liu, Y., Vinokur, M., Wang, Z.: J. Comput. Phys. 216(2), 780–801 (2006)

    Google Scholar 

  10. Lodato G., Castonguay P., Jameson A.: AIAA P, 2012-2963: 1–12. In: 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, LA, 25–28 Jun 2012

    Google Scholar 

  11. Lodato, G., Castonguay, P., Jameson, A.: Flow Turbul. Combust. 92(1–2), 579–606 (2014)

    Google Scholar 

  12. Lodato G., Rossi R.: AIAA P, 2013-3100: 1–17. In: 43rd Fluid Dynamics Conference, San Diego, CA, 24–27 Jun 2013

    Google Scholar 

  13. Lodato, G., Vervisch, L., Domingo, P.: Phys. Fluids 21(3), 035102 (2009)

    Google Scholar 

  14. Lyn, D., Rodi, W.: J. Fluid Mech. 267, 353–376 (1994)

    Article  Google Scholar 

  15. Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Phys. Fluids 20, 085101 (2008)

    Google Scholar 

  16. Roe, P.: J. Comput. Phys. 43, 357–372 (1981)

    Google Scholar 

  17. Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction, 2nd edn. Springer, Berlin (2001)

    Book  Google Scholar 

  18. Sun, M., Takayama, K.: J. Comput. Phys. 189(1), 305–329 (2003)

    Google Scholar 

  19. Sun, Y., Wang, Z., Liu, Y.: Commun. Comput. Phys. 2(2), 310–333 (2007)

    Google Scholar 

  20. Temmerman, L., Leschziner, M., Mellen, C., Fröhlich, J.: Int. J. Heat Fluid Fl. 24(2), 157–180 (2003)

    Google Scholar 

  21. Wang, Z., Liu, Y., May, G., Jameson, A.: J. Sci. Comput. 32(1), 45–71 (2007)

    Google Scholar 

Download references

Acknowledgements

The use of the SD solver originally developed by Antony Jameson’s group at Stanford University, and joint financial support from the Agence Nationale de la Recherche (ANR) and Fondation de Recherche pour l’Aéronautique et l’Espace (FRAE) under Grant No. ANR-14-CE05-0029 are gratefully acknowledged. This work was granted access to the HPC resources of IDRIS-CNRS under the allocation i2015-2a7361. The Haute Normandie Computing center CRIANN is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lodato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lodato, G., Chapelier, J.B. (2019). Evaluation of the Spectral Element Dynamic Model for LES on Unstructured, Deformed Meshes. In: Salvetti, M., Armenio, V., Fröhlich, J., Geurts, B., Kuerten, H. (eds) Direct and Large-Eddy Simulation XI. ERCOFTAC Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-04915-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04915-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04914-0

  • Online ISBN: 978-3-030-04915-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics