A Massively Parallel, Direction-Splitting Solver for DNS in Complex Geometries

  • F. AuteriEmail author
  • M. D. de Tullio
  • J.-L. Guermond
  • D. Montagnani
  • P. D. Konghar
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)


The Direct Numerical Simulation of turbulent flows (DNS) has proved itself, over the years, an extremely valuable tool to investigate the fundamental properties of turbulence, often rivalling experiments by virtue of its accuracy and of the insight it offers to the investigator (Moin and Mahesh, Ann Rev Fluid Mech 30:539–578, 1998) [15].


  1. 1.
    Auteri, F.: A quasi-optimal spectral method for turbulent flows in non-periodic geometries. In: Talamelli, A., Oberlack, M., Peinke, J. (eds.) Progress in Turbulence V. Springer Proceedings in Physics, vol. 149. Springer, Dordrecht (2014)CrossRefGoogle Scholar
  2. 2.
    Carini, M., Giannetti, F., Auteri, F.: First instability and structural sensitivity of the flow past two side-by-side cylinders. J. Fluid Mech. 749, 627–648 (2014)CrossRefGoogle Scholar
  3. 3.
    Castagna, J., Yao, Y.: Multi-block high order DNS code development for jet in turbulent cross-flow simulation. J. Algorithms Comput. Technol. 6, 593–622 (2012)CrossRefGoogle Scholar
  4. 4.
    Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: SIMSON: a pseudo-spectral solver for incompressible boundary layer flows. Technical Report, TRITA-MEK 2007:07. KTH MechanicsGoogle Scholar
  5. 5.
    de Tullio, M., Cristallo, A., Balaras, E., Verzicco, R.: Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622, 259–290 (2009)CrossRefGoogle Scholar
  6. 6.
    de Tullio, M.D., Pascazio, G.: A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 325, 201–225 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133, 84–101 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Giannetti, F., Luchini, P.: Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167–197 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guermond, J.-L., Minev, P.D.: A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting. C. R. Acad. Sci. Paris Ser. I 348, 581–585 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guermond, J.-L., Minev, P.D.: A new class of massively parallel direction splitting for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 200, 2083–2093 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kim, D., Choi, H.: Laminar flow past a sphere rotating in the streamwise direction. J. Fluid Mech. 461, 365–386 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to Re\(_\tau \approx 5200\). J. Fluid Mech. 774, 395–415 (2015)CrossRefGoogle Scholar
  13. 13.
    Liu, C., Liu, Z.: High order finite difference and multigrid methods for spatially evolving instability in a planar channel. J. Comput. Phys. 106, 92–100 (1993)CrossRefGoogle Scholar
  14. 14.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Ann. Rev. Fluid Mech. 37, 239–261 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Moin, P., Mahesh, K.: Direct numerical simulation: a tool in turbulence research. Ann. Rev. Fluid Mech. 30, 539–578 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Simens, M.P., Jimenez, J., Hoyas, S., Mizuno, Y.: A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228, 4218–4231 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • F. Auteri
    • 1
    Email author
  • M. D. de Tullio
    • 2
  • J.-L. Guermond
    • 3
  • D. Montagnani
    • 1
  • P. D. Konghar
    • 4
  1. 1.Dipartimento di Scienze e Tecnologie AerospazialiPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di Meccanica, Matematica e ManagementPolitecnico di BariBariItaly
  3. 3.Department of MathematicsTexas A&M UniversityCollege StationUSA
  4. 4.DICCA, Università degli Studi di GenovaGenovaItaly

Personalised recommendations