Studying Transient Jet Flames by High-Resolution LES Using Premixed Flamelet Chemistry

  • E. InancEmail author
  • F. Proch
  • A. M. Kempf
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)


A transient piloted turbulent non-premixed methane jet flame approaching its blow-off limit is numerically studied by high-resolution Large-Eddy Simulations (LES). In the statistically steady jet phase, the high turbulence intensity leads to local flame extinction and re-ignition events. During the transient phase, the pulsation leads to a global flame extinction soon after the blow-off velocity is reached. The flame then re-ignites when the strain is relaxed. To model turbulent combustion with a minimum set of equations in order to reduce the computational effort, a tabulated detailed chemistry approach is tested.



The authors gratefully acknowledge the financial support by the state North Rhine-Westphalia, Germany. We thank the University of Duisburg-Essen and the Center for Computational Sciences and Simulation (CCSS) for providing time on the HPC system magnitUDE (DFG grant INST 20876/209-1 FUGG) at the Zentrum für Informations- und Mediendienste (ZIM).


  1. 1.
    Wang, H., Juddoo, M., Starner, S.H., Masri, A.R., Pope, S.B.: A novel transient turbulent jet flame for studying turbulent combustion. Proc. Combust. Inst. 34, 1251–1259 (2013)CrossRefGoogle Scholar
  2. 2.
    Dibble, R.W., Masri, A.R., Bilger, R.W.: The spontaneous Raman scattering technique applied to nonpremixed flames of methane. Symp. (Int.) Combust. 67, 189–206 (1987)CrossRefGoogle Scholar
  3. 3.
    van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Compos. Sci. Technol. 161, 113–137 (2000)Google Scholar
  4. 4.
    Butler, T.D., O’rourke, P.J.: A numerical method for two dimensional unsteady reacting flows. Symp. (Int.) Combust. 16, 1503–1515 (1977)CrossRefGoogle Scholar
  5. 5.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRefGoogle Scholar
  6. 6.
    Smith et al.: (2000)
  7. 7.
    Proch, F., Kempf, A.M.: Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161, 2627–2646 (2014)CrossRefGoogle Scholar
  8. 8.
    Inanc, E., Nguyen, M.T., Kaiser, S., Kempf, A.M.: High-resolution LES of a starting jet. Comput. Fluids 140, 435–449 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Clayton, D.J., Jones, W.P.: Large eddy simulation of a methane-air diffusion flame. Flow Turbul. Combust. 81, 497–521 (2008)CrossRefGoogle Scholar
  10. 10.
    Klein, M.: A digital filter based generation of inflow data for spatially developing direct or numerical or large eddy simulation. J. Comput. Phys. 186, 652–665 (2003)CrossRefGoogle Scholar
  11. 11.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23, 085106 (2011)CrossRefGoogle Scholar
  12. 12.
    Juddoo, M., Masri, A.R.: High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation. Combust. Flame 158, 902–914 (2011)CrossRefGoogle Scholar
  13. 13.
    Vreman, A.W., Albrecht, B.A., Van Oijen, J.A., De Goey, L.P.H., Bastiaans, R.J.M.: Premixed and non-premixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153, 394–416 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chair of Fluid DynamicsInstitute for Combustion and Gasdynamics, University of Duisburg-EssenDuisburgGermany

Personalised recommendations