Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSINTELL))

  • 223 Accesses

Abstract

Nowadays, gas-assisted laser cutting of mild and carbon steels has been widely used in manufacturing industries for its accuracy and efficiency. But laser power requirement increases with thickness of the plate and increases process cost substantially. Laser assisted oxygen cutting (LASOX) is an effective method for cutting thick section cutting of mild steel with low power laser. The present chapter has explained the development of the LASOX process with its basic working principle. Researches carried out so far for modelling and optimisations of the LASOX process parameters using conventional statistical methods also have been discussed. But it has been observed that, limitations of statistical methods for modelling of complex non linear relationship between variables of laser material processing can be overcome by incorporating soft computing techniques. Those techniques are widely used in different laser material Processing. Some significant recent works have been discussed in the present chapter. But it has been yet to be incorporated in LASOX processes. Chapter ends with a notion to develop constructive integrated soft computing models for modelling and optimisation of LASOX processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfille JP, Pilot G, De Prunele D (1996) New pulsed YAG laser performances in cutting thick metallic materials for nuclear applications. In: Proceedings of SPIE, pp 134–144

    Google Scholar 

  • Arai T, Riches S (1997) Thick plate cutting with spinning laser beam. Laser Inst Am 83(1):19–26

    Google Scholar 

  • Canyurt OE, Kim HR, Lee KY (2008) Estimation of laser hybrid welded joint strength by using genetic algorithm approach. Mech Mater 40(10):825–831

    Article  Google Scholar 

  • Chaki S, Ghosal S (2011) Application of an optimised SA-ANN hybrid model for parametric modelling and optimisation of LASOX cutting of mild steel. Prod Eng Res Dev 5(3):251–262 (Springer, Heidelberg)

    Article  Google Scholar 

  • Chen SL (1999) The effects of high pressure assistant gas flow on high power CO2 laser cutting. J Mater Process Technol 88(1–3):57–66

    Article  Google Scholar 

  • Deb K (2005) Optimisation for engineering design: algorithms and examples, 8th edn. Prentice-Hall of India Private Limited, India

    Google Scholar 

  • Ermolaev GV, Kovalev OB, Zaitsev AV (2013) Parameterization of hybrid laser-assisted oxygen cutting of thick steel plate. Opt Laser Technol 47:95–101

    Article  Google Scholar 

  • Fukaya K, Karube N (1990) Analysis of CO2 laser beam suitable for thick metal cutting. Laser Inst Am 71:61–70

    Google Scholar 

  • Haykin S (2006) Neural networks: a comprehensive foundation, 2nd edn. Pearson Education Inc, India

    MATH  Google Scholar 

  • Kadri MB, Nisar S, Khan SZ, Khan WA (2015) Comparison of ANN and Finite Element Model for the prediction of thermal stresses in diode laser cutting of float glass. Optik—Int J Light Electron Opt 126(19):1959–1964

    Article  Google Scholar 

  • Kar A, Scott JE, Latham WP (1996) Theoretical and experimental studies of thick-section cutting with a chemical oxygen-iodine laser (COIL). J Laser Appl 8:125–133

    Article  Google Scholar 

  • Kuo C-FJ, Tsai W-L, Su T-L, Chen J-L (2011) Application of an LM-neural network for establishing a prediction system of quality characteristics for the LGP manufactured by CO2 laser. Opt Laser Technol 43(3):529–536

    Article  Google Scholar 

  • Luo H, Zeng H, Hu L, Hu X, Zhou Z (2005) Application of artificial neural network in laser welding defect diagnosis. J Mater Process Technol 170(1–2):403–411

    Article  Google Scholar 

  • Molian PA (1993) Dual-beam CO2 laser cutting of thick metallic materials. J Mater Sci 28:1738–1748

    Article  Google Scholar 

  • Neill WO, Gabzdyl JT (2000) New developments in oxygen-assisted laser cutting. J Opt Lasers Eng 34(4–6):355–367

    Google Scholar 

  • Olabi AG, Casalino G, Benyounis KY, Hashmi MSJ (2006) An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding. Adv Eng Softw 37(10):643–648

    Article  Google Scholar 

  • Park YW, Rhee S (2008) Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int J Adv Manuf Technol 37:1014–1021

    Article  Google Scholar 

  • Steen WM (2005) Laser material processing, 3rd edn. Springer, London

    Google Scholar 

  • Sundar M, Nath AK, Bandyopadhyay DK, Chaudhuri SP, Dey PK, Misra D (2009) Effect of process parameters on the cutting quality in Lasox cutting of mild steel. Int J Adv Manuf Technol 40(9–10):865–874

    Article  Google Scholar 

  • Tsai M-J, Li C-H, Chen C-C (2008) Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm. J Mater Process Technol 208(1–3):270–283

    Article  Google Scholar 

  • Yilbas BS, Karatas C, Uslan I, Keles O, Usta Y, Yilbas Z, Ahsan M (2008) Wedge cutting of mild steel by CO2 laser and cut-quality assessment in relation to normal cutting. Opt Lasers Eng 46(10):777–784

    Article  Google Scholar 

  • Zadeh LA (1992) Fuzzy logic, neural networks and soft computing, one-page course announcement of CS 294-4, spring 1993. University of California, Berkley

    Google Scholar 

  • Zaitsev AV, Kovalev OB, Malikov AG, Orishich AM, Shulyat’ev VB (2007) Laser cutting of thick steel sheets using supersonic oxygen jets. Quantum Electron 37:891–892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaki, S., Ghosal, S. (2019). LASOX Cutting: Principles and Evolution. In: Modelling and Optimisation of Laser Assisted Oxygen (LASOX) Cutting: A Soft Computing Based Approach. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-04903-4_1

Download citation

Publish with us

Policies and ethics