Reducing the Statistical Complexity of EMC Testing: Improvements for Radiated Experiments Using Stochastic Collocation and Bootstrap Methods

  • Chaouki Kasmi
  • Sébastien LalléchèreEmail author
  • Sébastien Girard
  • José Lopes-Esteves
  • Pierre Bonnet
  • Françoise Paladian
  • Lars-Ole Fichte
Part of the PoliTO Springer Series book series (PTSS)


The assessment of statistics and confidence intervals is deeply linked with electromagnetic compatibility (EMC) and electromagnetic interferences (EMI) issues. Indeed, the evaluation of margins and risks are inherent to EMC/EMI: many standards and/or guidelines require the accurate prediction of mean, standard deviation and/or extreme quantities of interest (voltages, currents, E-/H-fields, S-parameters, impedances …). It is well known that EMC/EMI testing configurations (both considering the devices under test and setups) are, by essence, complex to handle: for instance regarding the increase of frequency bandwidth and the coexistence of multi-physics/multi-scales issues. Although EMC/EMI studies are governed by the management of margins, taking into account the stochastic nature both of inputs and outputs remains a serious bottleneck. This is mostly due to stochastic (identification and characterization of random parameters, number of random variables …) and deterministic (computing and/or measuring costs at design and/or qualification steps) considerations. In order to tackle this problem, many stochastic techniques have been explored by different international groups during the past decade. Among these, this communication will be devoted to the introduction of reduced order models (inputs) and the application of bootstrapping (outputs). The advocated models will be discussed regarding pre- and post-inferences, and they will be applied to numerical and experimental radiated EMC tests; frequency- and time-domain experiments will demonstrate the accuracy and efficiency of these methods comparatively to brute force Monte Carlo approaches for electromagnetic field-to-wire coupling configurations.


Bootstrap Confidence intervals Electromagnetic compatibility Radiated EMC testing Reduced order modelling Statistical inference Stochastic collocation Uncertainty propagation 


  1. 1.
    Nitsch D, Camp M, Sabath F et al (2004) Susceptibility of some electronic equipment to HPEM threats. IEEE Trans Electromagn Compat 46:380–389CrossRefGoogle Scholar
  2. 2.
    Brauer F, Sabath F, Haseborg JL (2009) Susceptibility of IT network systems to interferences by HPEM. IEEE Int Symp Electromagn Compat 237–242Google Scholar
  3. 3.
    Mora N, Kasmi C, Rachidi F, Hélier M, Darces M (2013) Modeling and measurement of the propagation along low voltage power networks for IEMI studies, Technical report, Feb 2013Google Scholar
  4. 4.
    Kasmi C (2013) Application de la topologie électromagnétique à la modélisation du réseau énergétique basse tension: étude statistique des perturbations conduites, PhD thesis, UPMCGoogle Scholar
  5. 5.
    Parfenov YV, Zdoukhov LN, Radasky WA, Ianoz M (2004) Conducted IEMI threats for commercial buildings. IEEE Trans on Electromagn Compat 46:404–411CrossRefGoogle Scholar
  6. 6.
    Mansson D, Thottappillil R, Backstrom M (2008) Propagation of UWB transients in low-voltage power installation networks. IEEE Trans Electromagn Compat 50:619–629CrossRefGoogle Scholar
  7. 7.
    Gradoni G, Arnaut LR (2010) Generalized extreme-value distributions of power near a boundary inside electromagnetic reverberation chambers. IEEE Trans Electromagn Compat 52(3):506–515CrossRefGoogle Scholar
  8. 8.
    Kasmi C, Hélier M, Darces M, Prouff E (2013) Generalised Pareto distribution for extreme value modelling in electromagnetic compatibility. Electron Lett 49(5):334–335CrossRefGoogle Scholar
  9. 9.
    Larbi M, Besnier P, Pecqueux B (2015) Probability of EMC failure and sensitivity analysis with regard to uncertain variables by reliability methods. IEEE Trans Electromagn Compat 57(2)CrossRefGoogle Scholar
  10. 10.
    Kouassi A, Bourinet JM, Lalléchère S, Bonnet P, Fogli M (2016) Reliability and sensitivity analysis of transmission lines in a probabilistic EMC context. IEEE Trans Electromagn CompatGoogle Scholar
  11. 11.
    Sudret B (2007) Uncertainty propagation and sensitivity analysis in mechanical models. Contribution to structural reliability and stochastic spectral methods. French Habilitation (HDR), Clermont-Ferrand, FranceGoogle Scholar
  12. 12.
    Bonnet P, Diouf F, Chauvière C, Lalléchère S, Fogli M, Paladian F (2009) Numerical simulation of a reverberation chamber with a stochastic collocation method. C. R. Phys 10, Approaches Electromagn Compat 54–64CrossRefGoogle Scholar
  13. 13.
    Kroese D, Rubinstein D (2008) Simulation and the Monte Carlo method. WileyGoogle Scholar
  14. 14.
    Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, LondonCrossRefGoogle Scholar
  15. 15.
    Kasmi C, Hélier M, Darces M, Prouff E (2014) Application of a bootstrapping procedure to the analysis of the conducted propagation of electromagnetic interferences along the power network. Kleinheubach Tagung, Miltenberg, GermanyGoogle Scholar
  16. 16.
    Babu GJ, Singh K (1983) Inference on means using the bootstrap. Ann Stat 11(9):99–1003MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang Y, Hatzinakos D, Venetsanopoulos AN (1993) Bootstrapping techniques in the estimation of higher-order cumulants from short data records. In: IEEE international conference on acoustics, speech, and signal processing—ICASSP-93, vol 4, pp 200–203, 27–30 Apr 1993Google Scholar
  18. 18.
    Cucchiarelli A, Velardi P (1999) A statistical technique for bootstrapping available resources for proper nouns classification. In: Proceedings of international conference on information intelligence and systems, 1999, pp 429–435Google Scholar
  19. 19.
    Harrell F (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. SpringerGoogle Scholar
  20. 20.
    International Electrotechnical Commission (IEC) (2003) IEC 61000-4-21, EMC—Part 4–21: testing and measurement techniques—reverberation chamber test methodsGoogle Scholar
  21. 21.
    Kasmi C, Lalléchère S, Lopes Esteves J, Girard S, Bonnet P, Paladian F, Prouff E (2016) Stochastic EMC/EMI experiments optimization using resampling techniques. IEEE Trans Electromagn CompatGoogle Scholar
  22. 22.
    Lalléchère S, Girard S, Bonnet P, Paladian F (2012) Stochastic approaches for electromagnetic compatibility: a paradigm from complex reverberating enclosures. In: Proceedings of ESA workshop on EMC, Venice, Italy, May 2012Google Scholar
  23. 23.
    Lalléchère S, Girard S, Bonnet P, Paladian F (2013) Stochastic approaches for electromagnetic compatibility: a paradigm from complex reverberating enclosures. In: ICEAA 2013, Turin, Italy, Sept 2013Google Scholar
  24. 24.
    Rice J (1995) Mathematical statistics and data analysis, 2nd ed. Duxbury Press, ISBN 0-534-20934-3Google Scholar
  25. 25.
    IEEE standard method for measuring the shielding effectiveness of enclosures and boxes having all dimensions between 0.1 m and 2 m, 2013Google Scholar
  26. 26.
    Gagliardi L, Micheli D, Gradoni G, Moglie F, Mariani Primiani V (2015) Coupling between multipath environments through a large aperture. IEEE Antennas Wirel Propag Lett 14:1463–1466CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chaouki Kasmi
    • 1
  • Sébastien Lalléchère
    • 2
    Email author
  • Sébastien Girard
    • 2
  • José Lopes-Esteves
    • 1
  • Pierre Bonnet
    • 2
  • Françoise Paladian
    • 2
  • Lars-Ole Fichte
    • 3
  1. 1.French Network and Information Security Agency (ANSSI)ParisFrance
  2. 2.Université Clermont Auvergne, CNRS, Sigma Clermont, Institut Pascal Clermont-FerrandClermont-FerrandFrance
  3. 3.Helmut-Schmidt University (HSU)HamburgGermany

Personalised recommendations