Skip to main content

The Technical Challenges to V2G

  • Chapter
  • First Online:
Vehicle-to-Grid

Abstract

This chapter reviews the various technical challenges that vehicle-to-grid currently faces, with a richer focus on the three primary barriers: battery degradation, charger efficiency, and aggregation and communication. While none of these three barriers prevent a vehicle-to-grid system from being put into place, they are the basis for many of the other barriers in the sociotechnical framework, underscoring the importance of a nuanced knowledge of these from a technical perspective. While scaling and standardization of communication pose challenges, the implementation of algorithms may assuage all three of these barriers. The chapter lastly discusses the increasingly digitalization of society and the risks that vehicle-to-grid and other internet-of-thing technologies may pose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Based on the author’s personal experience with the data collection process with Nuvve, a V2G aggregator company (discussed in Chapter 1).

References

  1. Schuitema G, Anable J, Skippon S, Kinnear N. The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles. Transp Res Part Policy Pract. 2013;48:39–49.

    Article  Google Scholar 

  2. Egbue O, Long S. Barriers to widespread adoption of electric vehicles: an analysis of consumer attitudes and perceptions. Energy Policy. 2012;48:717–29.

    Article  Google Scholar 

  3. Hidrue MK, Parsons GR, Kempton W, Gardner MP. Willingness to pay for electric vehicles and their attributes. Resour Energy Econ. 2011;33(3):686–705.

    Article  Google Scholar 

  4. Thompson AW. Economic implications of lithium ion battery degradation for vehicle-to-grid (V2X) services. J Power Sources. 2018;396:691–709.

    Article  Google Scholar 

  5. Bishop JDK, Axon CJ, Bonilla D, Tran M, Banister D, McCulloch MD. Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV. Appl Energy. 2013;111:206–18.

    Article  Google Scholar 

  6. Rezvanizaniani SM, Liu Z, Chen Y, Lee J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J Power Sources. 2014;256:110–24.

    Article  Google Scholar 

  7. Wang D, Coignard J, Zeng T, Zhang C, Saxena S. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. J Power Sources. 2016;332:193–203.

    Article  Google Scholar 

  8. Jaguemont J, Boulon L, Dubé Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl Energy. 2016;164:99–114.

    Article  Google Scholar 

  9. Fernández IJ, Calvillo CF, Sánchez-Miralles A, Boal J. Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles. Energy. 2013;60:35–43.

    Article  Google Scholar 

  10. Smith K, Saxon A, Keyser M, Lundstrom B, Cao Z, Roc A. Life prediction model for grid-connected Li-ion battery energy storage system. In: Seattle, Washington; 2017. Available from: https://www.nrel.gov/docs/fy17osti/67102.pdf.

  11. Petit M, Prada E, Sauvant-Moynot V. Development of an empirical aging model for Li-ion batteries and application to assess the impact of vehicle-to-grid strategies on battery lifetime. Appl Energy. 2016;172:398–407.

    Article  Google Scholar 

  12. Shinzaki S, Sadano H, Maruyama Y, Kempton W. Deployment of vehicle-to-grid technology and related issues. In: 2015 [cited 2018 Jul 21]. Available from: http://papers.sae.org/2015-01-0306/.

  13. Lunz B, Yan Z, Gerschler JB, Sauer DU. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs. Energy Policy. 2012;46:511–19.

    Article  Google Scholar 

  14. Uddin K, Jackson T, Widanage WD, Chouchelamane G, Jennings PA, Marco J. On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system. Energy. 2017;133:710–22.

    Article  Google Scholar 

  15. Saxena S, Le Floch C, MacDonald J, Moura S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J Power Sources. 2015;282:265–76.

    Article  Google Scholar 

  16. Jensen AF, Cherchi E, Mabit SL. On the stability of preferences and attitudes before and after experiencing an electric vehicle. Transp Res Part Transp Environ. 2013;25:24–32.

    Article  Google Scholar 

  17. Apostolaki-Iosifidou E, Codani P, Kempton W. Measurement of power loss during electric vehicle charging and discharging. Energy. 2017;127:730–42.

    Article  Google Scholar 

  18. Apostolaki-Iosifidou E, Kempton W, Codani P. Reply to Shirazi and Sachs comments on “measurement of power loss during electric vehicle charging and discharging”. Energy. 2018;142:1142–43.

    Article  Google Scholar 

  19. Kim J-S, Choe G-Y, Jung H-M, Lee B-K, Cho Y-J, Han K-B. Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy. In: IEEE; 2010 [cited 2018 Jul 22]. p. 1–6. Available from: http://ieeexplore.ieee.org/document/5729042/.

  20. Musavi F, Edington M, Eberle W, Dunford WG. Energy efficiency in plug-in hybrid electric vehicle chargers: evaluation and comparison of front end AC-DC topologies. In: IEEE; 2011 [cited 2018 Jul 22]. p. 273–80. Available from: http://ieeexplore.ieee.org/document/6063780/.

  21. Kwon M, Jung S, Choi S. A high efficiency bi-directional EV charger with seamless mode transfer for V2G and V2H application. In: IEEE; 2015 [cited 2018 Jul 22]. p. 5394–99. Available from: http://ieeexplore.ieee.org/document/7310418/.

  22. Bodo N, Levi E, Subotic I, Espina J, Empringham L, Johnson CM. Efficiency evaluation of fully integrated on-board EV battery chargers with nine-phase machines. IEEE Trans Energy Convers. 2017;32(1):257–66.

    Article  Google Scholar 

  23. Sears J, Roberts D, Glitman K. A comparison of electric vehicle Level 1 and Level 2 charging efficiency. In: IEEE; 2014 [cited 2018 Jul 22]. p. 255–58. Available from: http://ieeexplore.ieee.org/document/7046253/.

  24. Peng C, Zou J, Lian L. Dispatching strategies of electric vehicles participating in frequency regulation on power grid: a review. Renew Sustain Energy Rev. 2017;68:147–52.

    Article  Google Scholar 

  25. Vandael S, Claessens B, Ernst D, Holvoet T, Deconinck G. Reinforcement learning of heuristic EV fleet charging in a day-ahead electricity market. IEEE Trans Smart Grid. 2015;6(4):1795–805.

    Article  Google Scholar 

  26. Talari S, Shafie-khah M, Siano P, Loia V, Tommasetti A, Catalão J. A review of smart cities based on the internet of things concept. Energies. 2017;10(4):421.

    Article  Google Scholar 

  27. Lee I, Lee K. The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus Horiz. 2015;58(4):431–40.

    Article  Google Scholar 

  28. Nahrstedt K, Li H, Nguyen P, Chang S, Vu L. Internet of mobile things: mobility-driven challenges, designs and implementations. In: IEEE; 2016 [cited 2018 Jul 27]. p. 25–36. Available from: http://ieeexplore.ieee.org/document/7471348/.

  29. Xu LD, He W, Li S. Internet of things in industries: a survey. IEEE Trans Ind Inform. 2014;10(4):2233–243.

    Article  Google Scholar 

  30. U.S. DOT. Highway statistics 2016 [Internet]. Washington, DC: U.S. Department of Transportation, Federal Highway Administration; 2018 Jun. Available from: https://www.fhwa.dot.gov/policyinformation/statistics/2016/.

  31. Philip Chen CL, Zhang C-Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci. 2014;275:314–47.

    Article  Google Scholar 

  32. Kester J, Noel L, Lin X, Zarazua de Rubens G, Sovacool BK. The coproduction of electric mobility: selectivity, conformity and fragmentation in the sociotechnical acceptance of vehicle-to-grid (V2G) standards. J Clean Prod. 2019; 207: 400–410. https://doi.org/10.1016/j.jclepro.2018.10.018.

    Article  Google Scholar 

  33. Martinenas S, Vandael S, Andersen PB, Christensen B. Standards for EV charging and their usability for providing V2G services in the primary reserve market.pdf. In: Montreal, Canada; 2016.

    Google Scholar 

  34. Pratt R, Tuffner F, Gowri K. Electric vehicle communication standards testing and validation—Phase I: SAE J2847/1. Richland, Washington: Pacific Northwest National Laboratory; 2011 Sep. p. 49. Report No.: PNNL-20913.

    Google Scholar 

  35. ISO. ISO 15118-1:2013—road vehicles—vehicle to grid communication interface—Part 1: general information and use-case definition [Internet]. International Standards Organization; 2013 Apr [cited 2016 Jun 20]. p. 65. Available from: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=55365.

  36. Saxena N, Choi BJ. Authentication scheme for flexible charging and discharging of mobile vehicles in the V2G networks. IEEE Trans Inf Forensics Secur. 2016;11(7):1438–52.

    Article  Google Scholar 

  37. California Energy Commission. Transcript of the 12/07/16 Vehicle-Grid Integration Communications Standards Workshop [Internet]. California Energy Commission; 2016. Available from: http://docketpublic.energy.ca.gov/PublicDocuments/16-TRAN-01/TN215114_20161228T104913_Transcript_of_the_120716_VehicleGrid_Integration_Communications.pdf.

  38. Markel T, Meintz A, Hardy K, Chen B, Bohn T, Smart J, et al. Multi-Lab EV Smart Grid Integration Requirements Study [Internet]. Golden, Colorado: NREL; 2015 May [cited 2016 May 22]. p. 91. Report No.: NREL/TP-5400-63963. Available from: http://www.nrel.gov/docs/fy16osti/60958.pdf.

  39. Chen B, Hardy KS, Harper JD, Bohn TP, Dobrzynski DS. Towards standardized vehicle grid integration: current status, challenges, and next steps. In: Transportation Electrification Conference and Expo (ITEC), 2015 IEEE [Internet]. IEEE; 2015 [cited 2016 Apr 28]. p. 1–6. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7165789.

  40. McDaniel P, McLaughlin S. Security and privacy challenges in the smart grid. IEEE Secur Priv Mag. 2009;7(3):75–77.

    Article  Google Scholar 

  41. Bekara C. Security issues and challenges for the IoT-based smart grid. Procedia Comput Sci. 2014;34:532–37.

    Article  Google Scholar 

  42. Quinn EL. Smart metering and privacy: existing laws and competing policies. SSRN Electron J [Internet]. 2009 [cited 2018 Aug 24]. Available from: http://www.ssrn.com/abstract=1462285.

  43. Saxena N, Grijalva S, Chukwuka V, Vasilakos AV. Network security and privacy challenges in smart vehicle-to-grid. IEEE Wirel Commun. 2017;24(4):88–98.

    Article  Google Scholar 

  44. Bao K, Valev H, Wagner M, Schmeck H. A threat analysis of the vehicle-to-grid charging protocol ISO 15118. Comput Sci Res Dev. 2018;33(1–2):3–12.

    Article  Google Scholar 

  45. Xu L, Jiang C, Wang J, Yuan J, Ren Y. Information security in big data: privacy and data mining. IEEE Access. 2014;2:1149–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance Noel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noel, L., Zarazua de Rubens, G., Kester, J., Sovacool, B.K. (2019). The Technical Challenges to V2G. In: Vehicle-to-Grid. Energy, Climate and the Environment. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-04864-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04864-8_3

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-04863-1

  • Online ISBN: 978-3-030-04864-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics