Skip to main content

From Molecular Classification to Targeted Therapy for Gastric Cancer in the Precision Medicine Era

  • Chapter
  • First Online:
Book cover Gastric Cancer In The Precision Medicine Era

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 618 Accesses

Abstract

Gastric cancer (GC) is a common malignant neoplasm worldwide and one of the main causes of cancer-related deaths. Despite some advances in therapies, the long-term survival of patients with advanced disease remains poor. Different types of classification have been used to stratify patients with GC for shaping the prognosis and treatment planning. Based on new knowledge of molecular pathways associated with different aspects of GC, new pathogenetic classifications for GC have been and continue to be proposed. These novel classifications create a new paradigm in the definition of cancer biology and allow the identification of relevant genomic subsets by using different techniques such as genomic screenings, functional studies and molecular or epigenetic characterization. An improvement in the prognostic classification for GC is essential to develop a proper therapy for a selected patient population. The aim of this chapter is to discuss the state of the art on combining the histological and molecular classifications of GC to provide an overview of the emerging therapeutic possibilities connected to the latest discoveries regarding GC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Borrmann R. Geschwulste des margens. In: Henke F, Lubarsch O, editors. Handbuch spez pathol anat und histo. Berlim: Springer; 1926. p. 864–71.

    Google Scholar 

  3. Siewert JR, Stein HJ. Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg. 1998;85:1457.

    Article  CAS  PubMed  Google Scholar 

  4. Lauren P. The two histological main types of gastric carcinoma: diffuse and so called intestinal-type carcinoma: an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    Article  CAS  PubMed  Google Scholar 

  5. Lauwers GY, Carneiro F, Graham DY. Gastric carcinoma. In: Bowman FT, Carneiro F, Hruban RH, editors. Classification of tumours of the digestive system. 4th ed. Lyon: IARC; 2010.

    Google Scholar 

  6. Japanese Research Society for Gastric Cancer. The general rules for the gastric cancer study in surgery and pathology I: clinical classification. Jpn J Surg. 1981;11:127.

    Article  Google Scholar 

  7. Tan IB, Ivanova T, Lim KH, et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology. 2011;141(2):476–85, 85 e1e11.

    Article  PubMed  Google Scholar 

  8. Choi YY, Cheong JH. Beyond precision surgery: molecularly motivated precision care for gastric cancer. Eur J Surg Oncol. 2017;43(5):856–64. https://doi.org/10.1016/j.ejso.2017.02.013. Epub 2017 Mar 1.

    Article  CAS  PubMed  Google Scholar 

  9. Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, Chua C, Feng Z, Guan YK, Ooi CH, Ivanova T, Zhang S, Lee M, Wu J, Ngo A, Manesh S, Tan E, Teh BT, So JB, Goh LK, Boussioutas A, Lim TK, Flotow H, Tan P, Rozen SG. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 2013;145:554–65.

    Article  CAS  PubMed  Google Scholar 

  10. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  CAS  Google Scholar 

  11. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, Ward L, Koo JH, Gopalakrishnan V, Zhu Y, Cheng LL, Lee J, Rha SY, Chung HC, Ganesan K, So J, Soo KC, Lim D, Chan WH, Wong WK, Bowtell D, Yeoh KG, Grabsch H, Boussioutas A, Tan P. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5:e1000676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K, Ye XS, Do IG, Liu S, Gong L, Fu J, Jin JG, Choi MG, Sohn TS, Lee JH, Bae JM, Kim ST, Park SH, Sohn I, Jung SH, Tan P, Chen R, Hardwick J, Kang WK, Ayers M, Hongyue D, Reinhard C, Loboda A, Kim S, Aggarwal A. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.

    Article  CAS  PubMed  Google Scholar 

  13. Dunne PD, McArt DG, Bradley CA, O’Reilly PG, Barrett HL, Cummins R, O’Grady T, Arthur K, Loughrey MB, Allen WL, McDade SS, Waugh DJ, Hamilton PW, Longley DB, Kay EW, Johnston PG, Lawler M, Salto-Tellez M, Van Schaeybroeck S. Challenging the cancer molecular stratification dogma: intratumoral heterogeneity undermines consensus molecular subtypes and potential diagnostic value in colorectal cancer. Clin Cancer Res. 2016;22:4095–104.

    Article  CAS  PubMed  Google Scholar 

  14. Uhlik MT, Liu J, Falcon BL, Iyer S, Stewart J, Celikkaya H, O’Mahony M, Sevinsky C, Lowes C, Douglass L, Jeffries C, Bodenmiller D, Chintharlapalli S, Fischl A, Gerald D, Xue Q, Lee JY, Santamaria-Pang A, Al-Kofahi Y, Sui Y, Desai K, Doman T, Aggarwal A, Carter JH, Pytowski B, Jaminet SC, Ginty F, Nasir A, Nagy JA, Dvorak HF, Benjamin LE. Stromal-based signatures for the classification of gastric cancer. Cancer Res. 2016;76:2573–86.

    Article  CAS  PubMed  Google Scholar 

  15. Min L, Zhao Y, Zhu S, Qiu X, Cheng R, Xing J, Shao L, Guo S, Zhang S. Integrated analysis identifies molecular signatures and specific prognostic factors for different gastric cancer subtypes. Transl Oncol. 2017;10:99–107.

    Article  PubMed  Google Scholar 

  16. Brettingham-Moore KH, Duong CP, Heriot AG, Thomas RJ, Phillips WA. Using gene expression profiling to predict response and prognosis in gastrointestinal cancers-the promise and the perils. Ann Surg Oncol. 2011;18:1484–91.

    Article  PubMed  Google Scholar 

  17. Wang Z, Chen G, Wang Q, Lu W, Xu M. Identification and validation of a prognostic 9-genes expression signature for gastric cancer. Oncotarget. 2017;8:73826–36.

    PubMed  PubMed Central  Google Scholar 

  18. Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein–Barr virus and gastric cancer [review]. Int J Oncol. 2015;46:1421–34.

    Article  CAS  PubMed  Google Scholar 

  19. Abe H, Kaneda A, Fukayama M. Epstein–Barr virus associated gastric carcinoma: use of host cell machineries and somatic gene mutations. Pathobiology. 2015;82:212–23.

    Article  CAS  PubMed  Google Scholar 

  20. Fukayama M, Hino R, Uozaki H. Epstein–Barr virus and gastric carcinoma: virus–host interactions leading to carcinoma. Cancer Sci. 2008;99:1726–33.

    Article  CAS  PubMed  Google Scholar 

  21. Song HJ, Srivastava A, Lee J, et al. Host inflammatory response predicts survival of patients with Epstein–Barr virus-associated gastric carcinoma. Gastroenterology. 2010;139:84–92.

    Article  PubMed  Google Scholar 

  22. Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD- L1 on tumor cells in the escape from host immune system and tumor immuno- therapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99:12293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion:implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54:307–14.

    Article  CAS  PubMed  Google Scholar 

  24. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Qiu M, Jin Y, et al. Programmed cell death ligand 1 (PD-L1) expression on gastric cancer and its relationship with clinicopathologic factors. Int J Clin Exp Pathol. 2015;8:11084–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Qing Y, Li Q, Ren T, et al. Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des Devel Ther. 2015;9:901–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JW, Nam KH, Ahn SH, et al. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer. Gastric Cancer. 2016;19:42–52.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson ED, Zahurak M, Murphy A, et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut; Available from: URL: http://gut.bmj.com/content/early/2016/01/22/gutjnl-2015-310839.long.

  29. Liu YX, Wang XS, Wang YF, et al. Prognostic significance of PD-L1 expression in patients with gastric cancer in East Asia: a meta-analysis. Onco Targets Ther. 2016;9:2649–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Saito R, Abe H, Kunita A, Yamashita H, Seto Y, Fukayama M. Overexpression and gene amplification of PD-L1 in cancer cells and PD-L1+ immune cells in Epstein-Barr virus-associated gastric cancer: the prognostic implications. Mod Pathol. 2017;30(3):427–39. https://doi.org/10.1038/modpathol.2016.202. Epub 2016 Dec 9.

    Article  CAS  PubMed  Google Scholar 

  31. Shankaran V, Muro K, Bang Y, Geva R, Catenacci D, Gupta S, et al. Correlation of gene expression signatures and clinical outcomes in patients with advanced gastric cancer treated with pembrolizumab (MK-3475). J Clin Oncol. 2015;33:3026.

    Article  Google Scholar 

  32. Bang Y, Im S, Lee K, Cho J, Song E, Lee K, et al. Randomized, double-blind phase II trial with prospective classification by ATM protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J Clin Oncol. Epub ahead of print 17 August 2015. 2015b;33:3858. https://doi.org/10.1200/JCO.2014.60.0320.

    Article  CAS  PubMed  Google Scholar 

  33. Fontana E, Smyth EC. Novel targets in the treatment of advanced gastric cancer: a perspective review. Ther Adv Med Oncol. 2016;8(2):113–25. https://doi.org/10.1177/1758834015616935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu JF, Zhou XK, Chen JH, Yi G, Chen HG, Ba MC, Lin SQ, Qi YC. Up-regulation of PIK3CA promotes metastasis in gastric carcinoma. World J Gastroenterol. 2010;16(39):4986–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye B, Jiang L, Xu H, Zhou D, Li Z. Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis. Int J Immunopathol Pharmacol. 2012;25(3):627–36.

    Article  CAS  PubMed  Google Scholar 

  36. Tapia O, Riquelme I, Leal P, Sandoval A, Aedo S, Weber H, Letelier P, Bellolio E, Villaseca M, Garcia P, Roa J. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 2014;465(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  37. Cinti C, Vindigni C, Zamparelli A, Sala D, Epistolato M, Marrelli D, Cevenini G, Tosi P. Activated Akt as an indicator of prognosis in gastric cancer. Virchows Arch. 2008;453(5):449–55.

    Article  CAS  PubMed  Google Scholar 

  38. Sangawa A, Shintani M, Yamao N, Kamoshida S. Phosphorylation status of Akt and caspase-9 in gastric and colorectal carcinomas. Int J Clin Exp Pathol. 2014;7(6):3312–7.

    PubMed  PubMed Central  Google Scholar 

  39. Welker ME, Kulik G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg Med Chem. 2013;21(14):4063–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Janku F, Tsimberidou AM, Garrido-Laguna I, Wang X, Luthra R, Hong DS, Naing A, Falchook GS, Moroney JW, Piha-Paul SA, Wheler JJ, Moulder SL, Fu S, Kurzrock R. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol Cancer Ther. 2011;10(3):558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davies B, Greenwood H, Dudley P. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Canc Ther. 2012;11:873–87.

    Article  CAS  Google Scholar 

  42. Li V, Wong C, Chan T. Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer. 2005;5:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yu H-G, Ai Y-W, Yu L-L, Zhou X-D, Liu J, Li J-H, Xu X-M, Liu S, Chen J, Liu F, Qi Y-L, Deng Q, Cao J, Liu S-Q, Luo H-S, Yu J-P. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer. 2008;122(2):433–43.

    Article  CAS  PubMed  Google Scholar 

  44. Oki E, Kakeji Y, Tokunaga E. Impact of PTEN/AKT/PI3K signal pathway on the chemotherapy for gastric cancer. J Clin Oncol. 2006;24(18):4034.

    Google Scholar 

  45. Im S, Lee K, Nam E. Tumori. 2005;91:513–21.

    CAS  PubMed  Google Scholar 

  46. Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther. 2012;13(5):281–8.

    Article  CAS  PubMed  Google Scholar 

  47. Brooks AJ, Dai W, O’Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, Parker MW, Sierecki E, Gambin Y, et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science. 2014;344(6185):1249783.

    Article  PubMed  CAS  Google Scholar 

  48. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  49. Buchert M, Burns C, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. Epub ahead of print 18 May 2015. 2015;35:939. https://doi.org/10.1038/onc.2015.150.

    Article  CAS  PubMed  Google Scholar 

  50. Hurwitz H, Uppal N, Wagner S, Bendell J, Beck J, Wade S, et al. A randomized doubleblind phase 2 study of ruxolitinib (RUX) or placebo (PBO) with capecitabine (CAPE) as second-line therapy in patients (pts) with metastatic pancreatic cancer (mPC). J Clin Oncol. 2014;32:4000.

    Article  Google Scholar 

  51. Pedrazzani C, Corso G, Velho S, Leite M, Pascale V, Bettarini F, Marrelli D, Seruca R, Roviello F. Evidence of tumor micro satellite instability in gastric cancer with familial aggregation. Fam Cancer. 2009;8:215–20. https://doi.org/10.1007/s10689-008-9231-7. PMID: 19152022.

    Article  CAS  PubMed  Google Scholar 

  52. Velho S, Fernandes MS, Leite M, Figueiredo C, Seruca R. Causes and consequences of microsatellite instability in gastric carcinogenesis. World J Gastroenterol. 2014;20:16433–42. https://doi.org/10.3748/wjg.v20.i44.16433. PMID: 25469011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chung DC, Rustgi AK. DNA mismatch repair and cancer. Gastroenterology. 1995;109:1685–99. [PMID: 7557155].

    Article  CAS  PubMed  Google Scholar 

  54. Correlation between mismatch repair deficiency (MMRd), microsatellite instability (MSI) and survival in MAGIC. J Clin Oncol [Internet]. Accessed 28 Jul 2016.

    Google Scholar 

  55. Pinto M, Wu Y, Mensink RG, Cirnes L, Seruca R, Hofstra RM. Somatic mutations in mismatch repair genes in sporadic gastric carcinomas are not a cause but a consequence of the mutator phenotype. Cancer Genet Cytogenet. 2008;180:110–4. https://doi.org/10.1016/j.cancergencyto.2007.09.022. PMID:18206535.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu L, Li Z, Wang Y, Zhang C, Liu Y, Qu X. Microsatellite instability and survival in gastric cancer: a systematic review and meta-analysis. Mol Clin Oncol. 2015;3:699–705. https://doi.org/10.3892/mco.2015.506. PMID: 26137290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Le D, Uram J, Wang H, Bartlett B, Kemberling H, Eyring A, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Camargo M, Kim W, Chiaravalli A, Kim K, Corvalan A, Matsuo K, et al. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut. 2014;63:236–43.

    Article  PubMed  Google Scholar 

  59. Choi Y, Bae J, An J, Kwon I, Cho I, Shin H, et al. Is microsatellite instability a prognostic marker in gastric cancer? a systematic review with meta-analysis. J Surg Oncol. 2014;110:129–35.

    Article  PubMed  Google Scholar 

  60. Giam M, Rancati G. Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 2015;10:3.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chia NY, Tan P. Molecular classification of gastric cancer. Ann Oncol. 2016;27:763–9. https://doi.org/10.1093/annonc/mdw040. PMID: 26861606.

    Article  PubMed  Google Scholar 

  62. Aprile G, Giampieri R, Bonotto M, Bittoni A, Ongaro E, Cardellino GG, Graziano F, Giuliani F, Fasola G, Cascinu S, Scartozzi M. The challenge of targeted therapies for gastric cancer patients: the beginning of a long journey. Expert Opin Investig Drugs. 2014;23:925–42.

    Article  CAS  PubMed  Google Scholar 

  63. Chen T, Xu XY, Zhou PH. Emerging molecular classifications and therapeutic implications for gastric cancer. Chin J Cancer. 2016;35:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tan P, Yeoh KG. Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology. 2015;149:1153–1162.e3.

    Article  CAS  PubMed  Google Scholar 

  65. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008;19:1523–9.

    Article  CAS  PubMed  Google Scholar 

  66. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Rüschoff J, Kang YK. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  67. Hecht JR, Bang YJ, Qin SK, Chung HC, Xu JM, Park JO, Jeziorski K, Shparyk Y, Hoff PM, Sobrero A, Salman P, Li J, Protsenko SA, Wainberg ZA, Buyse M, Afenjar K, Houé V, Garcia A, Kaneko T, Huang Y, Khan-Wasti S, Santillana S, Press MF, Slamon D. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC–A randomized phase III trial. J Clin Oncol. 2016;34:443–51.

    Article  CAS  PubMed  Google Scholar 

  68. Baselga J, Cortés J, Kim S, Im S, Hegg R, Im Y, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.

    Article  CAS  PubMed  Google Scholar 

  69. Hecht J, Bang Y, Qin S, Chung H, Xu J, Park J, et al. Lapatinib in combination with capecitabine plus oxaliplatin (CapeOx) in HER2 positive advanced or metastatic gastric (A/MGC), esophageal (EAC), or astroesophageal (GEJ) adenocarcinoma: the logic trial. J Clin Oncol. 2013;31:LBA4001.

    Article  Google Scholar 

  70. Satoh T, Xu R, Chung H, Sun G, Doi T, Xu J, et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN-a randomized, phase III study. J Clin Oncol. 2014b;32:2039–49.

    Article  CAS  PubMed  Google Scholar 

  71. Deva S, Baird R, Cresti N, Garcia-Corbacho J, Hogarth L, Frenkel E, et al. Phase I expansion of S-222611, a reversible inhibitor of EGFR and HER2, in advanced solid tumors, including patients with brain metastases. J Clin Oncol. 2015;33(15_suppl):2511.

    Article  Google Scholar 

  72. Lee JY, Hong M, Kim ST, Park SH, Kang WK, Kim KM, Lee J. The impact of concomitant genomic alterations on treatment outcome for trastuzumab therapy in HER2-positive gastric cancer. Sci Rep. 2015;5:9289. https://doi.org/10.1038/srep09289. PMID: 25786580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zuo Q, Liu J, Zhang J, Wu M, Guo L, Liao W. Development of trastuzumab-resistant human gastric carcinoma cell lines and mechanisms of drug resistance. Sci Rep. 2015;5:11634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Piro G, Carbone C, Cataldo I, Di Nicolantonio F, Giacopuzzi S, Aprile G, Simionato F, Boschi F, Zanotto M, Mina MM, Santoro R, Merz V, Sbarbati A, de Manzoni G, Scarpa A, Tortora G, Melisi D. An FGFR3 autocrine loop sustains acquired resistance to trastuzumab in gastric cancer patients. Clin Cancer Res. 2016;22:6164–75.

    Article  CAS  PubMed  Google Scholar 

  75. Arienti C, Zanoni M, Pignatta S, Del Rio A, Carloni S, Tebaldi M, Tedaldi G, Tesei A. Preclinical evidence of multiple mechanisms underlying trastuzumab resistance in gastric cancer. Oncotarget. 2016;7:18424–39.

    Article  PubMed  PubMed Central  Google Scholar 

  76. White CD, Brown MD, Sacks DB. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett. 2009;583:1817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Walch A, Seidl S, Hermannstädter C, Rauser S, Deplazes J, Langer R, von Weyhern CH, Sarbia M, Busch R, Feith M, Gillen S, Höfler H, Luber B. Combined analysis of Rac1, IQGAP1, Tiam1 and E-cadherin expression in gastric cancer. Mod Pathol. 2008;21:544–52.

    Article  CAS  PubMed  Google Scholar 

  78. Khoury H, Naujokas MA, Zuo D, Sangwan V, Frigault MM, Petkiewicz S, Dankort DL, Muller WJ, Park M. HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell. 2005;16:550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen CT, Kim H, Liska D, Gao S, Christensen JG, Weiser MR. MET activation mediates resistance to lapatinib inhibition of HER2- amplified gastric cancer cells. Mol Cancer Ther. 2012;11:660–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Silva N, Schulz L, Paterson A, Qain W, Secrier M, Godfrey E, Cheow H, O’Donovan M, Lao-Sirieix P, Jobanputra M, Hochhauser D, Fitzgerald R, Ford H. Molecular effects of Lapatinib in the treatment of HER2 overexpressing oesophago-gastric adenocarcinoma. Br J Cancer. 2015;113:1305–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lordick F, Kang Y, Chung H, Salman P, Oh S, Bodoky G, et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14:490–9.

    Article  CAS  PubMed  Google Scholar 

  82. Waddell T, Chau I, Cunningham D, Gonzalez D, Okines A, Okines C, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14:481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dragovich T, Mccoy S, Fenoglio-Preiser C, Wang J, Benedetti J, Baker A, et al. Phase II trial of erlotinib in gastroesophageal junction and gastric adenocarcinomas: SWOG 0127. J Clin Oncol. 2006;24:4922–7.

    Article  CAS  PubMed  Google Scholar 

  84. Dutton S, Ferry D, Blazeby J, Abbas H, Dahle-Smith A, Mansoor W, et al. Gefitinib for oesophageal cancer progressing after chemotherapy (COG): a phase 3, multicentre, double-blind, placebocontrolled randomised trial. Lancet Oncol. 2014;15:894–904.

    Article  CAS  PubMed  Google Scholar 

  85. Ha S, Lee J, Kang S, Do I, Ahn S, Park J, et al. MET overexpression assessed by new interpretation method predicts gene amplification and poor survival in advanced gastric carcinomas. Mod Pathol. 2013;26:1632–41.

    Article  CAS  PubMed  Google Scholar 

  86. Scagliotti G, Novello S, Von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev. 2013;39:793–801.

    Article  CAS  PubMed  Google Scholar 

  87. Cunningham D, Tebbutt N, Davidenko I, Murad A, Al-Batran S, Ilson D, et al. Phase III, randomized, double-blind, multicenter, placebo (P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced MET-positive (pos) gastric or gastroesophageal junction (G/GEJ) cancer: RILOMET-1 study. J Clin Oncol. 2015;33:4000.

    Article  Google Scholar 

  88. Shah M, Bang Y, Lordick F, Tabernero J, Chen M, Hack S, et al. Metgastric: a phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative (HER2-) and METpositive (MET+) adenocarcinoma of the stomach or gastroesophageal junction (GEC). J Clin Oncol. 2015;33:4012.

    Article  Google Scholar 

  89. Iveson T, Donehower R, Davidenko I, Tjulandin S, Deptala A, Harrison M, et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol. 2014;15:1007–18.

    Article  CAS  PubMed  Google Scholar 

  90. Chen J, Zhou SJ, Zhang Y, Zhang GQ, Zha TZ, Feng YZ, Zhang K. Clinicopathological and prognostic significance of galectin-1 and vascular endothelial growth factor expression in gastric cancer. World J Gastroenterol. 2013;19(13):2073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee SJ, Kim JG, Sohn SK, Chae YS, Moon JH, Kim SN, Bae HI, Chung HY, Yu W. No association of vascular endothelial growth factor-A (VEGF-A) and VEGF-C expression with survival in patients with gastric cancer. Cancer Res Treat. 2009;41(4):218–23.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Deguchi K, Ichikawa D, Soga K, Watanabe K, Kosuga T, Takeshita H, Konishi H, Morimura R, Tsujiura M, Komatsu S, Shiozaki A, Okamoto K, Fujiwara H, Otsuji E. Clinical significance of vascular endothelial growth factors C and D and chemokine receptor CCR7 in gastric cancer. Anticancer Res. 2010;30(6):2361–6.

    PubMed  Google Scholar 

  93. Gou HF, Chen XC, Zhu J, Jiang M, Yang Y, Cao D, Hou M. Expressions of COX-2 and VEGF-C in gastric cancer: correlations with lymphangiogenesis and prognostic implications. J Exp Clin Canc Res. 2011;30:14.

    Article  CAS  Google Scholar 

  94. Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, Lim HY, Yamada Y, Wu J, Langer B, Starnawski M, Kang YK. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol. 2011;29(30):3968–76.

    Article  CAS  PubMed  Google Scholar 

  95. Van Cutsem E, de Haas S, Kang YK, Ohtsu A, Tebbutt NC, Ming Xu J, Peng Yong W, Langer B, Delmar P, Scherer SJ, Shah MA. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J Clin Oncol. 2012;30(17):2119–27.

    Article  PubMed  CAS  Google Scholar 

  96. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, dos Santos LV, Aprile G, Ferry DR, Melichar B, Tehfe M, Topuzov E, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebocontrolled,phase 3 trial. Lancet. 2014;383(9911):31–9.

    Article  CAS  PubMed  Google Scholar 

  97. Li J, Qin S, Xu J, Guo W, Xiong J, Bai Y, Sun G, Yang Y, Wang L, Xu N, Cheng Y, Wang Z, Zheng L, et al. Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized, placebocontrolled,parallel-arm, phase II trial. J Clin Oncol. 2013;31(26):3219–25.

    Article  CAS  PubMed  Google Scholar 

  98. Choi YY, Noh SH, Cheong JH. Molecular dimensions of gastric cancer: translational and clinical perspectives. J Pathol Transl Med. 2016;50:1–9.

    Article  PubMed  Google Scholar 

  99. Corso G, Marrelli D, Pascale V, Vindigni C, Roviello F. Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature. BMC Cancer. 2012;12:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu YC, Shen CY, Wu HS, Hsieh TY, Chan DC, Chen CJ, Yu JC, Yu CP, Harn HJ, Chen PJ, Hsieh CB, Chen TW, Hsu HM. Mechanisms inactivating the gene for E-cadherin in sporadic gastric carcinomas. World J Gastroenterol. 2006;12:2168–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li X, Wu WK, Xing R, Wong SH, Liu Y, Fang X, Zhang Y, Wang M, Wang J, Li L, Zhou Y, Tang S, Peng S, Qiu K, Chen L, Chen K, Yang H, Zhang W, Chan MT, Lu Y, Sung JJ, Yu J. Distinct subtypes of gastric cancer defined by molecular characterization include novel mutational signatures with prognostic capability. Cancer Res. 2016;76:1724–32.

    Article  CAS  PubMed  Google Scholar 

  102. Weissman B, Knudsen KE. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res. 2009;69:8223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang DD, Chen YB, Pan K, Wang W, Chen SP, Chen JG, Zhao JJ, Lv L, Pan QZ, Li YQ, Wang QJ, Huang LX, Ke ML, He J, Xia JC. Decreased expression of the ARID1A gene is associated with poor prognosis in primary gastric cancer. PLoS One. 2012;7:e40364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shang X, Marchioni F, Evelyn CR, Sipes N, Zhou X, Seibel W, Wortman M, Zheng Y. Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors. Proc Natl Acad Sci U S A. 2013;110(8):3155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shang X, Marchioni F, Sipes N, Evelyn CR, Jerabek-Willemsen M, Duhr S, Seibel W, Wortman M, Zheng Y. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem Biol. 2012;19(6):699–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Türeci O, Koslowski M, Helftenbein G, Castle J, Rohde C, Dhaene K, Seitz G, Sahin U. Claudin-18 gene structure, regulation, and expression is evolutionary conserved in mammals. Gene. 2011;481:83–92.

    Article  PubMed  CAS  Google Scholar 

  107. Yao F, Kausalya JP, Sia YY, Teo AS, Lee WH, Ong AG, Zhang Z, Tan JH, Li G, Bertrand D, Liu X, Poh HM, Guan P, Zhu F, Pathiraja TN, Ariyaratne PN, Rao J, Woo XY, Cai S, Mulawadi FH, Poh WT, Veeravalli L, Chan CS, Lim SS, Leong ST, Neo SC, Choi PS, Chew EG, Nagarajan N, Jacques PÉ, So JB, Ruan X, Yeoh KG, Tan P, Sung WK, Hunziker W, Ruan Y, Hillmer AM. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. Cell Rep. 2015;12:272–85.

    Article  CAS  PubMed  Google Scholar 

  108. FAST: An international, multicenter, randomized, phase II trial of epirubicin, oxaliplatin, and capecitabine (EOX) with or without IMAB362, a first-in-class anti-CLDN18.2 antibody, as firstline therapy in patients with advanced CLDN18.2 gastric and gastroesophageal junction (GEJ) adenocarcinoma. J Clin Oncol [Internet]. Accessed 31 Jul 2016. Available from: URL: http://meetinglibrary.asco.org/content/164788-176.

  109. Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hausser HJ, Brenner RE. Phenotypic instability of Saos-2 cells in long-term culture. Biochem Biophys Res Commun. 2005;333(1):216–22.

    Article  CAS  PubMed  Google Scholar 

  111. Gillet JP, Calcagno AM, Varma S, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A. 2011;108(46):18708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Furukawa T, Kubota T, Watanabe M, et al. Orthotopic transplantation of histologically intact clinical specimens of stomach cancer to nude mice: correlation of metastatic sites in mouse and individual patient donors. Int J Cancer. 1993;53:608–12.

    Article  CAS  PubMed  Google Scholar 

  113. Furukawa T, Fu X, Kubota T, et al. Nude mouse metastatic models of human stomach cancer constructed using orthotopic implantation of histologically intact tissue. Cancer Res. 1993;53:1204–8.

    CAS  PubMed  Google Scholar 

  114. Zhang L, Yang J, Cai J, et al. A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy. Sci Rep. 2013;3:2992.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhu Y, Tian T, Li Z, et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Sci Rep. 2015;5:8542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lau WM, Teng E, Chong HS, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74:2630–41.

    Article  CAS  PubMed  Google Scholar 

  117. Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–25.

    Article  CAS  PubMed  Google Scholar 

  118. Park H, Cho S-Y, Kim H, et al. Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer. Proc Natl Acad Sci U S A. 2015;112:12492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dedhia PH, Bertaux-Skeirik N, Zavros Y, et al. Organoid models of human gastrointestinal development and disease. Gastroenterology. 2016;150:1098–112.

    Article  PubMed  Google Scholar 

  120. Hill DR, Spence JR. Gastrointestinal organoids: understanding the molecular basis of the host-microbe interface. Cell Mol Gastroenterol Hepatol. 2017;3:138–49.

    Article  PubMed  Google Scholar 

  121. McCracken KW, Catá EM, Crawford CM, et al. Modelling human development and disease in pluripotent stemcell- derived gastric organoids. Nature. 2014;516:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li X, Nadauld L, Ootani A, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med. 2014;20:769–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nadauld LD, Garcia S, Natsoulis G, et al. Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol. 2014;15:428.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  CAS  PubMed  Google Scholar 

  125. van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Canzonieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alessandrini, L., Manchi, M., Italia, F., Perin, T., Canzonieri, V. (2019). From Molecular Classification to Targeted Therapy for Gastric Cancer in the Precision Medicine Era. In: Canzonieri, V., Giordano, A. (eds) Gastric Cancer In The Precision Medicine Era. Current Clinical Pathology. Humana, Cham. https://doi.org/10.1007/978-3-030-04861-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04861-7_10

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-04860-0

  • Online ISBN: 978-3-030-04861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics