Skip to main content

A Public, Blockchain-Based Distributed Smart-Contract Platform Enabling Mobile Lite Wallets Using a Proof-of-Stake Consensus Algorithm

  • Conference paper
  • First Online:
Business Information Systems Workshops (BIS 2018)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 339))

Included in the following conference series:

Abstract

Blockchain-enabled smart contracts that employ proof-of-stake validation for transactions, promise significant performance advantages compared to proof-of-work solutions. For broad industry adoption, other important requirements must be met in addition. For example, stable backwards-compatible smart-contract systems must automate cross-organizational information-logistics orchestration with lite mobile wallets that support the unspent transaction output (UTXO) protocol and simple payment verification (SPV) techniques. The currently leading smart-contract solution Ethereum, uses computationally expensive proof-of-work validation, is expected to hard-fork multiple times in the future and requires downloading the entire blockchain. Consequently, Ethereum smart contracts have limited utility for large industry applications. This paper fills the gap in the state of the art by presenting the Qtum smart-contract framework that allows for managing transaction headers in lite mobile wallets in addition with using a proof-of-stake (PoS) consensus algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://solidity.readthedocs.io/en/develop/.

  2. 2.

    https://qtum.org/en.

  3. 3.

    https://en.bitcoin.it/wiki/Script.

  4. 4.

    https://github.com/ethereum/wiki/wiki/White-Paper.

  5. 5.

    http://tinyurl.com/zxgayfr.

  6. 6.

    https://peercoin.net/.

  7. 7.

    https://litecoin.info/Scrypt.

  8. 8.

    http://cryptorials.io/glossary/x11/.

  9. 9.

    http://www.groestlcoin.org/about-groestlcoin/.

  10. 10.

    http://blackcoin.co/.

  11. 11.

    https://github.com/qtumproject/qtum.

  12. 12.

    https://qtumeco.io/dapps.

  13. 13.

    https://qtumeco.io/wallet.

  14. 14.

    https://datawallet.com/index.html.

References

  1. Antonopoulos, A.M.: Mastering Bitcoins (2014)

    Google Scholar 

  2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_10

    Chapter  Google Scholar 

  3. Biryukov, A., Khovratovich, D.: Equihash: asymmetric proof-of-work based on the generalized birthday problem. In: Proceedings of NDSS 2016, San Diego, CA, USA, 21–24 February 2016 (2016). ISBN 1-891562-41-X

    Google Scholar 

  4. Bisping, B., et al.: Mechanical verification of a constructive proof for FLP. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_7

    Chapter  Google Scholar 

  5. Bussmann, O.: The future of finance: fintech, tech disruption, and orchestrating innovation. In: Francioni, R., Schwartz, R.A. (eds.) Equity Markets in Transition, pp. 473–486. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45848-9_19

    Chapter  Google Scholar 

  6. Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on Distributed Cryptocurrencies and Consensus Ledgers (2016)

    Google Scholar 

  7. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  8. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_8

    Chapter  Google Scholar 

  9. Dai, P., Mahi, N., Earls, J., Norta, A.: Smart-Contract Value-Transfer Protocols on a Distributed Mobile Application Platform (2017). https://qtum.org/user/pages/03.tech/01.white-papers/Qtum%20Whitepaper.pdf

  10. Frey, D., Makkes, M.X., Roman, P.L., Taïani, F., Voulgaris, S.: Bringing secure Bitcoin transactions to your smartphone. In: Proceedings of the 15th International Workshop on Adaptive and Reflective Middleware, ARM 2016, pp. 3:1–3:6. ACM, New York (2016)

    Google Scholar 

  11. Kiayias, A., Konstantinou, I., Russell, A., David, B., Oliynykov, R.: A provably secure proof-of-stake blockchain protocol (2016)

    Google Scholar 

  12. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 254–269 (2016)

    Google Scholar 

  13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012):28 (2008)

    Google Scholar 

  14. Norta, A., Hawthorne, D., Engel, S.L.: A privacy-protecting data-exchange wallet with ownership-and monetization capabilities. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  15. Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Towards a novel privacy-preserving access control model based on blockchain technology in IoT. In: Rocha, Á., Serrhini, M., Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information and Communication Technologies. AISC, vol. 520, pp. 523–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46568-5_53

    Chapter  Google Scholar 

  16. Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant payments (2015)

    Google Scholar 

  17. Rosenfeld, M.: Overview of colored coins. White paper, bitcoil.co.il (2012)

    Google Scholar 

  18. Serguei, P.: A probabilistic analysis of the Nxt forging algorithm. Ledger 1, 69–83 (2016)

    Article  Google Scholar 

  19. Vasin, P.: Blackcoin’s proof-of-stake protocol v2 (2014)

    Google Scholar 

  20. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4_9

    Chapter  Google Scholar 

  21. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Norta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Norta, A., Dai, P., Mahi, N., Earls, J. (2019). A Public, Blockchain-Based Distributed Smart-Contract Platform Enabling Mobile Lite Wallets Using a Proof-of-Stake Consensus Algorithm. In: Abramowicz, W., Paschke, A. (eds) Business Information Systems Workshops. BIS 2018. Lecture Notes in Business Information Processing, vol 339. Springer, Cham. https://doi.org/10.1007/978-3-030-04849-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04849-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04848-8

  • Online ISBN: 978-3-030-04849-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics