Skip to main content

Exercise and Blood Pressure Control in Hypertension

  • Chapter
  • First Online:
Cardiorespiratory Fitness in Cardiometabolic Diseases

Abstract

Hypertension is one of the most important cardiovascular disease risk factors due to its high prevalence and significant medical costs. The 2017 American College of Cardiology and American Heart Association Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure (BP) in Adults and the American College of Sports Medicine recommend lifestyle modifications such as habitual physical activity as a cornerstone therapy to prevent, treat, and control hypertension. The purposes of this chapter are to (1) present the pathophysiology, prevalence, and incidence of hypertension; (2) overview the epidemiological association between cardiorespiratory fitness and hypertension; (3) overview the current consensus on the effects of acute (immediate, short-term, or postexercise hypotension) and chronic (long-term or training) exercise on BP among individuals with elevated BP or established hypertension; (4) discuss new and emerging research on the effects of acute and chronic exercise on BP that has the potential to alter the way in which aerobic exercise is prescribed to prevent, treat, and control hypertension in the future; and (5) present exercise prescription recommendations and special considerations for individuals with hypertension that consider this new and emerging research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1RM:

One-repetition maximum

ACC:

American College of Cardiology

ACSM:

American College of Sports Medicine

AHA:

American Heart Association

BP:

Blood pressure

CO:

Cardiac output

CVD:

Cardiovascular disease

DBP:

Diastolic blood pressure

Ex Rx:

Exercise prescription

FIT:

Frequency, intensity, and time

FITT-VP:

Frequency, intensity, time, type, volume, and progression

HIIT:

High-intensity interval training

HR:

Heart rate

IHG:

Isometric handgrip

JNC 7 :

The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure

JNC 8 :

The Eighth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure

MAP:

Mean arterial pressure

PEH:

Postexercise hypotension

RPE:

Rating of perceived exertion

RT:

Resistance training

SBP:

Systolic blood pressure

TPR:

Total peripheral resistance

USA:

United States

\( \dot{\mathrm{V}}{\mathrm{O}}_2 \)max:

Maximal oxygen consumption

\( \dot{\mathrm{V}}{\mathrm{O}}_2 \)peak:

Peak oxygen consumption

\( \dot{\mathrm{V}}{\mathrm{O}}_2\mathrm{R} \) :

Oxygen consumption reserve

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603. https://doi.org/10.1161/CIR.0000000000000485.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the lancet commission on hypertension. Lancet. 2016;388(10060):2665–712.

    Article  PubMed  Google Scholar 

  3. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390(10100):1345–422.

    Article  Google Scholar 

  4. Kung HC, Xu J. Hypertension-related mortality in the United States, 2000–2013. NCHS Data Brief. Hyattsville: National Center for Health Statistics; 2015. No.: 193.

    Google Scholar 

  5. Office of Disease Prevention and Health Promotion. Heart disease and stroke. Healthy people 2020 [Internet]. 2016. Available from https://www.healthypeople.gov/2020/topics-objectives/topic/heart-disease-and-stroke

  6. Sacco RL, Roth GA, Reddy KS, Arnett DK, Bonita R, Gaziano TA, et al. The heart of 25 by 25: achieving the goal of reducing global and regional premature deaths from cardiovascular diseases and stroke: a modeling study from the American Heart Association and world heart federation. Circulation. 2016;133(23):e674–90.

    Article  PubMed  Google Scholar 

  7. WHO. A global brief on hypertension: silent killer, global public health crisis. Geneva: WHO Press, World Health Organization; 2013. No.: WHO/DCO/WHD/2013.2.

    Google Scholar 

  8. Franco OH, Peeters A, Bonneux L, de Laet C. Blood pressure in adulthood and life expectancy with cardiovascular disease in men and women: life course analysis. Hypertension. 2005;46(2):280–6.

    Article  CAS  PubMed  Google Scholar 

  9. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.

    Article  PubMed  Google Scholar 

  10. Whelton P, Carey R, Aronow W, Casey D, Collins K, Himmelfarb CD, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines [published online November 13, 2017]. Hypertension.

    Google Scholar 

  11. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mmHg, 1990-2015. JAMA. 2017;317(2):165–82.

    Article  PubMed  Google Scholar 

  12. Stedman TL. Stedman’s medical dictionary. 28th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  13. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42(6):1206–52.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Su L, Cai X, Mai W, Wang S, Hu Y, et al. Association of all-cause and cardiovascular mortality with prehypertension: a meta-analysis. Am Heart J. 2014;167(2):160–168.e1.

    Article  PubMed  Google Scholar 

  15. Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014;383(9932):1899–911.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guo X, Zhang X, Guo L, Li Z, Zheng L, Yu S, et al. Association between pre-hypertension and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Curr Hypertens Rep. 2013;15(6):703–16.

    Article  CAS  PubMed  Google Scholar 

  17. Huang Y, Wang S, Cai X, Mai W, Hu Y, Tang H, et al. Prehypertension and incidence of cardiovascular disease: a meta-analysis. BMC Med. 2013;11:177. https://doi.org/10.1186/1741-7015-11-177.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang S, Wu H, Zhang Q, Xu J, Fan Y. Impact of baseline prehypertension on cardiovascular events and all-cause mortality in the general population: a meta-analysis of prospective cohort studies. Int J Cardiol. 2013;168(5):4857–60.

    Article  PubMed  Google Scholar 

  19. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;129(25 Suppl 2):S49–73.

    Article  PubMed  Google Scholar 

  20. Muntner P, Carey RM, Gidding S, Jones DW, Taler SJ, Wright JT Jr, et al. Potential US population impact of the 2017 ACC/AHA high blood pressure guideline. Circulation. 2018;137(2):109–18. https://doi.org/10.1161/CIRCULATIONAHA.117.032582.

    Article  PubMed  Google Scholar 

  21. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pescatello LS, MacDonald HV, Johnson BT. Chapter 1. the effects of aerobic exercise on hypertension: current consensus and emerging research. In: Pescatello LS, editor. Effects of exercise on hypertension: from cells to physiological systems. Cham: Springer International Publishing; 2015. p. 3–24.

    Chapter  Google Scholar 

  23. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, et al. American College of Sports Medicine position stand: exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–53.

    Article  PubMed  Google Scholar 

  24. Riebe D, American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2017. p. 480.

    Google Scholar 

  25. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2960–84.

    Article  PubMed  Google Scholar 

  26. Kario K. Essential manual of 24 hour blood pressure management from morning to nocturnal hypertension. Oxford: John Wiley & Sons; 2015. p. 150.

    Google Scholar 

  27. Cremer A, Amraoui F, Lip G, Morales E, Rubin S, Segura J, et al. From malignant hypertension to hypertension-MOD: a modern definition for an old but still dangerous emergency. J Hum Hypertens. 2016;30(8):463–6.

    Article  CAS  PubMed  Google Scholar 

  28. Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension. Ann Intern Med. 2003;139(9):761–76.

    Article  CAS  PubMed  Google Scholar 

  29. Sabbahi A, Arena R, Elokda A, Phillips SA. Exercise and hypertension: uncovering the mechanisms of vascular control. Prog Cardiovasc Dis. 2016;59(3):226–34.

    Article  PubMed  Google Scholar 

  30. Mitchell GF. Arterial stiffness and hypertension. Hypertension. 2014;64(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez C, Sander GE, Giles TD. Prehypertension: defining the transitional phenotype. Curr Hypertens Rep. 2016;18(1):2. https://doi.org/10.1007/s11906-015-0611-8.

    Article  CAS  PubMed  Google Scholar 

  32. Carretero OA, Oparil S. Essential hypertension. Part I: Definition and etiology. Circulation. 2000;101(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  33. Joyner MJ, Limberg JK. Blood pressure regulation: every adaptation is an integration? Eur J Appl Physiol. 2014;114(3):445–50.

    Article  PubMed  Google Scholar 

  34. Kaplan N. Primary hypertension: pathogenesis. In: Kaplan N, Flynn J, editors. Kaplan’s clinical hypertension. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 50–121.

    Google Scholar 

  35. Davis JT, Rao F, Naqshbandi D, Fung MM, Zhang K, Schork AJ, et al. Autonomic and hemodynamic origins of prehypertension: central role of heredity. J Am Coll Cardiol. 2012;59(24):2206–16.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Safar ME, Balkau B, Lange C, Protogerou AD, Czernichow S, Blacher J, et al. Hypertension and vascular dynamics in men and women with metabolic syndrome. J Am Coll Cardiol. 2013;61(1):12–9.

    Article  PubMed  Google Scholar 

  38. Safar ME, Blacher J, Jankowski P. Arterial stiffness, pulse pressure, and cardiovascular disease-is it possible to break the vicious circle? Atherosclerosis. 2011;218(2):263–71.

    Article  CAS  PubMed  Google Scholar 

  39. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116(6):1007–21.

    Article  CAS  PubMed  Google Scholar 

  40. Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ Res. 2016;118(3):379–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lackland DT. Controlling hypertension to prevent target organ damage: perspectives from the world hypertension league president. Ethn Dis. 2016;26(3):267–70.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Oktay AA, Lavie CJ, Milani RV, Ventura HO, Gilliland YE, Shah S, et al. Current perspectives on left ventricular geometry in systemic hypertension. Prog Cardiovasc Dis. 2016;59(3):235–46.

    Article  PubMed  Google Scholar 

  43. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123(3):327–34.

    Article  PubMed  Google Scholar 

  44. MacMahon S, Peto R, Collins R, Godwin J, Cutler J, Sorlie P, et al. Blood pressure, stroke, and coronary heart disease: part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–74.

    Article  CAS  PubMed  Google Scholar 

  45. Santos M, Shah AM. Alterations in cardiac structure and function in hypertension. Curr Hypertens Rep. 2014;16(5):428. https://doi.org/10.1007/s11906-014-0428-x.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Katholi RE, Couri DM. Left ventricular hypertrophy: major risk factor in patients with hypertension: Update and practical clinical applications. Int J Hypertens. 2011;2011:495349.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27(12):2458–64.

    Article  CAS  PubMed  Google Scholar 

  48. Crim MT, Yoon SS, Ortiz E, Wall HK, Schober S, Gillespie C, et al. National surveillance definitions for hypertension prevalence and control among adults. Circ Cardiovasc Qual Outcomes. 2012;5(3):343–51.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Whelton PK. The elusiveness of population-wide high blood pressure control. Annu Rev Public Health. 2015;36(1):109–30.

    Article  PubMed  Google Scholar 

  50. Chapman MJ, Sposito AC. Hypertension and dyslipidaemia in obesity and insulin resistance: Pathophysiology, impact on atherosclerotic disease and pharmacotherapy. Pharmacol Ther. 2008;117(3):354–73.

    Article  CAS  PubMed  Google Scholar 

  51. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension. 2004;44(4):398–404.

    Article  CAS  PubMed  Google Scholar 

  52. Muntner P, Woodward M, Mann DM, Shimbo D, Michos ED, Blumenthal RS, et al. Comparison of the framingham heart study hypertension model with blood pressure alone in the prediction of risk of hypertension: the multi-ethnic study of atherosclerosis. Hypertension. 2010;55(6):1339–45.

    Article  CAS  PubMed  Google Scholar 

  53. Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham heart study: a cohort study. Lancet. 2001;358(9294):1682–6.

    Article  CAS  PubMed  Google Scholar 

  54. De Marco M, de Simone G, Roman MJ, Chinali M, Lee ET, Russell M, et al. Cardiovascular and metabolic predictors of progression of prehypertension into hypertension: the strong heart study. Hypertension. 2009;54(5):974–80.

    Article  PubMed  CAS  Google Scholar 

  55. Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National health and nutrition examination survey, 2011-2012. NCHS Data Brief. 2013;133:1–8.

    Google Scholar 

  56. Sim JJ, Bhandari SK, Shi J, Liu IL, Calhoun DA, McGlynn EA, et al. Characteristics of resistant hypertension in a large, ethnically diverse hypertension population of an integrated health system. Mayo Clin Proc. 2013;88(10):1099–107.

    Article  PubMed  Google Scholar 

  57. Ashman JJ, Rui P, Schappert SM. Age differences in visits to office-based physicians by adults with hypertension: United states, 2013. NCHS Data Brief. Hyattsville, MD: National Center for Health Statistics; 2016. No.: 263.

    Google Scholar 

  58. Hing E, Rui P, Palso K. National ambulatory medical care survey: 2013 state and national summary tables [Internet]. 2017; Available at: http://www.cdc.gov/nchs/ahcd/ahcd_products.htm.

  59. Staessen JA, Wang JG, Birkenhager WH. Outcome beyond blood pressure control? Eur Heart J. 2003;24(6):504–14.

    Article  PubMed  Google Scholar 

  60. Kantor ED, Rehm CD, Haas JS, Chan AT, Giovannucci EL. Trends in prescription drug use among adults in the United States from 1999–2012. JAMA. 2015;314(17):1818–31. https://doi.org/10.1001/jama.2015.13766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Egan BM, Li J, Hutchison FN, Ferdinand KC. Hypertension in the united states, 1999 to 2012: progress toward healthy people 2020 goals. Circulation. 2014;130(19):1692–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Quindry JC, Franklin BA. Cardioprotective exercise and pharmacologic interventions as complementary antidotes to cardiovascular disease. Exerc Sport Sci Rev. 2018;46(1):5–17.

    Article  PubMed  Google Scholar 

  63. Kokkinos P. Cardiorespiratory fitness, exercise, and blood pressure. Hypertension. 2014;64(6):1160–4.

    Article  CAS  PubMed  Google Scholar 

  64. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, et al. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res. 2015;117(2):207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee DC, Brellenthin AG, Thompson PD, Sui X, Lee IM, Lavie CJ. Running as a key lifestyle medicine for longevity. Prog Cardiovasc Dis. 2017;60(1):45–55.

    Article  PubMed  Google Scholar 

  66. Sui X, Sarzynski MA, Lee DC, Kokkinos PF. Impact of changes in cardiorespiratory fitness on hypertension, dyslipidemia and survival: an overview of the epidemiological evidence. Prog Cardiovasc Dis. 2017;60(1):56–66.

    Article  PubMed  Google Scholar 

  67. Kokkinos P. The impact of exercise and physical fitness on blood pressure, left ventricular hypertrophy, and mortality among individuals with prehypertension and hypertension. In: Pescatello LS, editor. Effects of exercise on hypertension. Cham: Springer International Publishing; 2015. p. 87–102.

    Chapter  Google Scholar 

  68. Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, et al. Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: Advances since 2009. Prog Cardiovasc Dis. 2017;60(1):11–20.

    Article  PubMed  Google Scholar 

  69. Swift DL, Johannsen NM, Earnest CP, Newton RL Jr, McGee JE, Church TS. Cardiorespiratory fitness and exercise training in African Americans. Prog Cardiovasc Dis. 2017;60(1):96–102.

    Article  PubMed  Google Scholar 

  70. Myers J, McAuley P, Lavie CJ, Despres JP, Arena R, Kokkinos P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis. 2015;57(4):306–14.

    Article  PubMed  Google Scholar 

  71. Shiroma EJ, Lee IM. Physical activity and cardiovascular health: lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation. 2010;122(7):743–52.

    Article  PubMed  Google Scholar 

  72. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):e653–99.

    Article  PubMed  Google Scholar 

  73. Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. Circulation. 2010;122(16):1637–48.

    Article  PubMed  Google Scholar 

  74. Carnethon MR, Evans NS, Church TS, Lewis CE, Schreiner PJ, Jacobs DR Jr, et al. Joint associations of physical activity and aerobic fitness on the development of incident hypertension: coronary artery risk development in young adults. Hypertension. 2010;56(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  75. Chase NL, Sui X, Lee DC, Blair SN. The association of cardiorespiratory fitness and physical activity with incidence of hypertension in men. Am J Hypertens. 2009;22(4):417–24.

    Article  PubMed  Google Scholar 

  76. Jae SY, Babu AS, Yoon ES, Kurl S, Laukkanen JA, Choi YH, et al. Impact of cardiorespiratory fitness and risk of systemic hypertension in nonobese versus obese men who are metabolically healthy or unhealthy. Am J Cardiol. 2017;120(5):765–8.

    Article  PubMed  Google Scholar 

  77. Juraschek SP, Blaha MJ, Whelton SP, Blumenthal R, Jones SR, Keteyian SJ, et al. Physical fitness and hypertension in a population at risk for cardiovascular disease: the henry ford ExercIse testing (FIT) project. J Am Heart Assoc. 2014;3(6):e001268. https://doi.org/10.1161/JAHA.114.001268.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu J, Sui X, Lavie CJ, Zhou H, Park YM, Cai B, et al. Effects of cardiorespiratory fitness on blood pressure trajectory with aging in a cohort of healthy men. J Am Coll Cardiol. 2014;64(12):1245–53.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sui X, Sarzynski MA, Lee D, Lavie CJ, Zhang J, Kokkinos PF, et al. Longitudinal patterns of cardiorespiratory fitness predict the development of hypertension among men and women. Am J Med. 2017;130(4):469.e2–76.e2.

    Article  Google Scholar 

  80. Chow L, Eberly LE, Austin E, Carnethon M, Bouchard C, Sternfeld B, et al. Fitness change effects on midlife metabolic outcomes. Med Sci Sports Exerc. 2015;47(5):967–73.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Crump C, Sundquist J, Winkleby MA, Sundquist K. Interactive effects of physical fitness and body mass index on the risk of hypertension. JAMA Intern Med. 2016;176(2):210–6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Maslow AL, Sui X, Colabianchi N, Hussey J, Blair SN. Muscular strength and incident hypertension in normotensive and prehypertensive men. Med Sci Sports Exerc. 2010;42(2):288–95.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vaara JP, Fogelholm M, Vasankari T, Santtila M, Hakkinen K, Kyrolainen H. Associations of maximal strength and muscular endurance with cardiovascular risk factors. Int J Sports Med. 2014;35(4):356–60.

    CAS  PubMed  Google Scholar 

  84. Andersen K, Rasmussen F, Held C, Neovius M, Tynelius P, Sundstrom J. Exercise capacity and muscle strength and risk of vascular disease and arrhythmia in 1.1 million young swedish men: cohort study. BMJ. 2015;351:h4543.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Artero EG, Lee DC, Ruiz JR, Sui X, Ortega FB, Church TS, et al. A prospective study of muscular strength and all-cause mortality in men with hypertension. J Am Coll Cardiol. 2011;57(18):1831–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Crump C, Sundquist J, Winkleby MA, Sundquist K. Aerobic fitness, muscular strength and obesity in relation to risk of heart failure. Heart. 2017;103(22):1780–7.

    Article  PubMed  Google Scholar 

  87. Karlsen T, Nauman J, Dalen H, Langhammer A, Wisloff U. The combined association of skeletal muscle strength and physical activity on mortality in older women: the HUNT2 study. Mayo Clin Proc. 2017;92(5):710–8.

    Article  PubMed  Google Scholar 

  88. Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:a439.

    Article  PubMed  Google Scholar 

  89. Stamatakis E, Lee IM, Bennie J, Freeston J, Hamer M, O'Donovan G, et al. Does strength promoting exercise confer unique health benefits? a pooled analysis of eleven population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. Am J Epidemiol. 2018;187:1102–12.

    Article  PubMed  Google Scholar 

  90. Artero EG, Lee DC, Lavie CJ, Espana-Romero V, Sui X, Church TS, et al. Effects of muscular strength on cardiovascular risk factors and prognosis. J Cardiopulm Rehabil Prev. 2012;32(6):351–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17(11):87. https://doi.org/10.1007/s11906-015-0600-y.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gando Y, Murakami H, Kawakami R, Yamamoto K, Kawano H, Tanaka N, et al. Cardiorespiratory fitness suppresses age-related arterial stiffening in healthy adults: a 2-year longitudinal observational study. J Clin Hypertens (Greenwich). 2016;18(4):292–8.

    Article  CAS  Google Scholar 

  93. Lavie CJ, De Schutter A, Parto P, Jahangir E, Kokkinos P, Ortega FB, et al. Obesity and prevalence of cardiovascular diseases and prognosis-the obesity paradox updated. Prog Cardiovasc Dis. 2016;58(5):537–47.

    Article  PubMed  Google Scholar 

  94. Nauman J, Stensvold D, Coombes JS, Wisløff U. Cardiorespiratory fitness, sedentary time, and cardiovascular risk factor clustering. Med Sci Sports Exerc. 2016;48(4):625–32.

    Article  CAS  PubMed  Google Scholar 

  95. Johnson BT, MacDonald HV, Bruneau ML Jr, Goldsby TU, Brown JC, Huedo-Medina TB, et al. Methodological quality of meta-analyses on the blood pressure response to exercise: a review. J Hypertens. 2014;32(4):706–23.

    Article  CAS  PubMed  Google Scholar 

  96. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2002;288(23):2981–97.

    Article  Google Scholar 

  97. Whelton PK, He J, Appel LJ, Cutler JA, Havas S, Kotchen TA, et al. Primary prevention of hypertension: clinical and public health advisory from the national high blood pressure education program. JAMA. 2002;288(15):1882–8.

    Article  PubMed  Google Scholar 

  98. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136(7):493–503.

    Article  PubMed  Google Scholar 

  99. Brown RE, Riddell MC, Macpherson AK, Canning KL, Kuk JL. The joint association of physical activity, blood-pressure control, and pharmacologic treatment of hypertension for all-cause mortality risk. Am J Hypertens. 2013;26(8):1005–10.

    Article  PubMed  Google Scholar 

  100. Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ. 2013;347:f5577.

    Article  PubMed  PubMed Central  Google Scholar 

  101. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint national committee (JNC 8). JAMA. 2013;311(5):507–20.

    Article  CAS  Google Scholar 

  102. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC practice guidelines for the management of arterial hypertension. Blood Press. 2014;23(1):3–16.

    Article  PubMed  Google Scholar 

  103. Leung AA, Nerenberg K, Daskalopoulou SS, McBrien K, Zarnke KB, Dasgupta K, et al. Hypertension Canada's 2016 Canadian hypertension education program guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2016;32(5):569–88.

    Article  PubMed  Google Scholar 

  104. Pescatello LS, MacDonald HV, Ash GI, Lambert LM, Farquhar WB, Arena R, et al. Assessing the existing professional exercise recommendations for hypertension: a review and recommendations for future research priorities. Mayo Clin Proc. 2015;90(6):801–12.

    Article  PubMed  Google Scholar 

  105. Pescatello LS, Corso LML, MacDonald HV, Thompson PDT, Taylor BA, Panza GA, et al. Small sample sizes confound understanding of cardiometabolic responses to exercise. Exerc Sport Sci Rev. 2017;45(3):173–80. https://doi.org/10.1249/JES.0000000000000115.

    Article  PubMed  Google Scholar 

  106. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–8.

    CAS  PubMed  Google Scholar 

  107. Moker EA, Bateman LA, Kraus WE, Pescatello LS. The relationship between the blood pressure responses to exercise following training and detraining periods. PLoS One. 2014;9(9):e105755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. MacDonald HV, Pescatello LS. Exercise prescription for hypertension: new advances for optimizing blood pressure benefits. In: Watson RR, Zibadi S, editors. Lifestyle in heart health and disease. 1st ed. London: Academic Press; 2018. p. 115–36.

    Chapter  Google Scholar 

  109. Somani YB, Baross AW, Brook RD, Milne KJ, McGowan CL, Swaine IL. Acute response to a 2-minute isometric exercise test predicts the blood pressure-lowering efficacy of isometric resistance training in young adults. Am J Hypertens. 2018;31(3):362–8.

    Google Scholar 

  110. Wegmann M, Hecksteden A, Poppendieck W, Steffen A, Kraushaar J, Morsch A, et al. Postexercise hypotension as a predictor for long-term training-induced blood pressure reduction: a large-scale randomized controlled trial. Clin J Sport Med. 2017; https://doi.org/10.1097/JSM.0000000000000475.

  111. Hecksteden A, Grutters T, Meyer T. Association between postexercise hypotension and long-term training-induced blood pressure reduction: a pilot study. Clin J Sport Med. 2013;23(1):58–63.

    Article  PubMed  Google Scholar 

  112. Liu S, Goodman J, Nolan R, Lacombe S, Thomas SG. Blood pressure responses to acute and chronic exercise are related in prehypertension. Med Sci Sports Exerc. 2012;44(9):1644–52.

    Article  PubMed  Google Scholar 

  113. Devereux GR, Wiles JD, Howden R. Immediate post-isometric exercise cardiovascular responses are associated with training-induced resting systolic blood pressure reductions. Eur J Appl Physiol. 2015;115(2):327–33.

    Article  PubMed  Google Scholar 

  114. Tibana RA, de Sousa NM, da Cunha ND, Pereira GB, Thomas SG, Balsamo S, et al. Correlation between acute and chronic 24-hour blood pressure response to resistance training in adult women. Int J Sports Med. 2015;36(1):82–9.

    CAS  PubMed  Google Scholar 

  115. Moreira SR, Cucato GG, Terra DF, Ritti-Dias RM. Acute blood pressure changes are related to chronic effects of resistance exercise in medicated hypertensives elderly women. Clin Physiol Funct Imaging. 2016;36(3):242–8.

    Article  PubMed  Google Scholar 

  116. Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Hakkinen K, et al. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One. 2012;7(5):e37887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Leifer ES, Mikus CR, Karavirta L, Resnick BD, Kraus WE, Hakkinen K, et al. Adverse cardiovascular response to aerobic exercise training: is this a concern? Med Sci Sports Exerc. 2016;48(1):20–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Luttrell MJ, Halliwill JR. Recovery from exercise: vulnerable state, window of opportunity, or crystal ball? Front Physiol. 2015;6:204.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kenney MJ, Seals DR. Postexercise hypotension. key features, mechanisms, and clinical significance. Hypertension. 1993;22(5):653–64.

    Article  CAS  PubMed  Google Scholar 

  120. Halliwill JR, Buck TM, Lacewell AN, Romero SA. Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol. 2013;98(1):7–18.

    Article  PubMed  Google Scholar 

  121. MacDonald JR. Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens. 2002;16(4):225–36.

    Article  CAS  PubMed  Google Scholar 

  122. Cardoso CG Jr, Gomides RS, Queiroz AC, Pinto LG, da Silveira LF, Tinucci T, et al. Acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure. Clinics (Sao Paulo). 2010;65(3):317–25.

    Article  Google Scholar 

  123. Gomes Anunciacao P, Doederlein PM. A review on post-exercise hypotension in hypertensive individuals. Arq Bras Cardiol. 2011;96(5):e100–9.

    PubMed  Google Scholar 

  124. Oliveira Marques-Silvestre AC, do Socorro Brasileiro-Santos M, Sarmento de Oliveira A, Thiago Maciel da Silva F, da Cruz Santos A, da Cruz Santos A. Magnitude of acute aerobic post-exercise hypotension: a systematic review of randomized trials. Motricidade. 2014;10(3):99–111.

    Google Scholar 

  125. Carpio-Rivera E, Moncada-Jimenez J, Salazar-Rojas W, Solera-Herrera A. Acute effects of exercise on blood pressure: a meta-analytic investigation. Arq Bras Cardiol. 2016;106(5):422–33.

    PubMed  PubMed Central  Google Scholar 

  126. Ciolac EG, Guimaraes GV, D'Avila VM, Bortolotto LA, Doria EL, Bocchi EA. Acute aerobic exercise reduces 24-h ambulatory blood pressure levels in long-term-treated hypertensive patients. Clinics (Sao Paulo). 2008;63(6):753–8.

    Article  Google Scholar 

  127. Pescatello LS, Kulikowich JM. The aftereffects of dynamic exercise on ambulatory blood pressure. Med Sci Sports Exerc. 2001;33(11):1855–61.

    Article  CAS  PubMed  Google Scholar 

  128. Jones H, George K, Edwards B, Atkinson G. Is the magnitude of acute post-exercise hypotension mediated by exercise intensity or total work done? Eur J Appl Physiol. 2007;102(1):33–40.

    Article  PubMed  Google Scholar 

  129. Eicher JD, Maresh CM, Tsongalis GJ, Thompson PD, Pescatello LS. The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Am Heart J. 2010;160(3):513–20.

    Article  PubMed  Google Scholar 

  130. Bhammar DM, Angadi SS, Gaesser GA. Effects of fractionized and continuous exercise on 24-h ambulatory blood pressure. Med Sci Sports Exerc. 2012;44(12):2270–6.

    Article  PubMed  Google Scholar 

  131. Miyashita M, Burns SF, Stensel DJ. Accumulating short bouts of running reduces resting blood pressure in young normotensive/pre-hypertensive men. J Sports Sci. 2011;29(14):1473–82.

    Article  PubMed  Google Scholar 

  132. Ciolac EG, Guimaraes GV, Avila VM D, Bortolotto LA, Doria EL, Bocchi EA. Acute effects of continuous and interval aerobic exercise on 24-h ambulatory blood pressure in long-term treated hypertensive patients. Int J Cardiol. 2009;133(3):381–7.

    Article  PubMed  Google Scholar 

  133. Guidry MA, Blanchard BE, Thompson PD, Maresh CM, Seip RL, Taylor AL, et al. The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am Heart J. 2006;151(6):1322.e5–12.

    Article  Google Scholar 

  134. MacDonald JR, MacDougall JD, Hogben CD. The effects of exercise duration on post-exercise hypotension. J Hum Hypertens. 2000;14(2):125–9.

    Article  CAS  PubMed  Google Scholar 

  135. Santana HA, Moreira SR, Asano RY, Sales MM, Cordova C, Campbell CS, et al. Exercise intensity modulates nitric oxide and blood pressure responses in hypertensive older women. Aging Clin Exp Res. 2013;25(1):43–8.

    Article  PubMed  Google Scholar 

  136. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46(4):667–75.

    Article  CAS  PubMed  Google Scholar 

  137. Kelley GA, Kelley KA, Tran ZV. Aerobic exercise and resting blood pressure: a meta-analytic review of randomized, controlled trials. Prev Cardiol. 2001;4(2):73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kelley GA, Kelley KS, Tran ZV. Walking and resting blood pressure in adults: a meta-analysis. Prev Med. 2001;33(2 Pt 1):120–7.

    CAS  PubMed  Google Scholar 

  139. Fagard RH. Physical fitness and blood pressure. J Hypertens Suppl. 1993;11(5):S47–52.

    Article  CAS  PubMed  Google Scholar 

  140. Cornelissen VA, Buys R, Smart NA. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J Hypertens. 2013;31(4):639–48.

    Article  CAS  PubMed  Google Scholar 

  141. Sosner P, Guiraud T, Gremeaux V, Arvisais D, Herpin D, Bosquet L. The ambulatory hypotensive effect of aerobic training: a reappraisal through a meta-analysis of selected moderators. Scand J Med Sci Sports. 2017;27(3):327–41.

    Article  CAS  PubMed  Google Scholar 

  142. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(1):e004473.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489–509.

    Article  PubMed  Google Scholar 

  144. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51(6):494–503.

    Article  PubMed  Google Scholar 

  146. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol (1985). 1985;58(3):785–90.

    Article  CAS  Google Scholar 

  147. Porth CJ, Bamrah VS, Tristani FE, Smith JJ. The valsalva maneuver: mechanisms and clinical implications. Heart Lung. 1984;13(5):507–18.

    CAS  PubMed  Google Scholar 

  148. Crump C, Sundquist J, Winkleby MA, Sundquist K. Interactive effects of aerobic fitness, strength, and obesity on mortality in men. Am J Prev Med. 2017;52(3):353–61.

    Article  PubMed  Google Scholar 

  149. Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: a narrative review. Eur J Intern Med. 2015;26(5):303–10.

    Article  PubMed  Google Scholar 

  150. Brito Ade F, de Oliveira CV, Santos Mdo S, Santos AC. High-intensity exercise promotes postexercise hypotension greater than moderate intensity in elderly hypertensive individuals. Clin Physiol Funct Imaging. 2014;34(2):126–32.

    Article  PubMed  Google Scholar 

  151. de Freitas BA, Brasileiro-Santos Mdo S, Coutinho de Oliveira CV, Sarmento da Nobrega TK, Lucia de Moraes Forjaz C, da Cruz Santos A. High-intensity resistance exercise promotes postexercise hypotension greater than moderate intensity and affects cardiac autonomic responses in women who are hypertensive. J Strength Cond Res. 2015;29(12):3486–93.

    Article  Google Scholar 

  152. Cavalcante PA, Rica RL, Evangelista AL, Serra AJ, Figueira A Jr, Pontes FL Jr, et al. Effects of exercise intensity on postexercise hypotension after resistance training session in overweight hypertensive patients. Clin Interv Aging. 2015;10:1487–95.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Moraes MR, Bacurau RF, Casarini DE, Jara ZP, Ronchi FA, Almeida SS, et al. Chronic conventional resistance exercise reduces blood pressure in stage 1 hypertensive men. J Strength Cond Res. 2012;26(4):1122–9.

    Article  PubMed  Google Scholar 

  154. Mota MR, Oliveira RJ, Terra DF, Pardono E, Dutra MT, de Almeida JA, et al. Acute and chronic effects of resistance exercise on blood pressure in elderly women and the possible influence of ACE I/D polymorphism. Int J Gen Med. 2013;6:581–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Scher LM, Ferriolli E, Moriguti JC, Scher R, Lima NK. The effect of different volumes of acute resistance exercise on elderly individuals with treated hypertension. J Strength Cond Res. 2011;25(4):1016–23.

    Article  PubMed  Google Scholar 

  156. Casonatto J, Goessler KF, Cornelissen VA, Cardoso JR, Polito MD. The blood pressure-lowering effect of a single bout of resistance exercise: a systematic review and meta-analysis of randomised controlled trials. Eur J Prev Cardiol. 2016;23(16):1700–14.

    Article  PubMed  Google Scholar 

  157. Melo CM, Alencar Filho AC, Tinucci T, Mion D Jr, Forjaz CL. Postexercise hypotension induced by low-intensity resistance exercise in hypertensive women receiving captopril. Blood Press Monit. 2006;11(4):183–9.

    Article  PubMed  Google Scholar 

  158. MacDonald HV, Johnson BT, Huedo-Medina TB, Livingston J, Forsyth KC, Kraemer WJ, et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J Am Heart Assoc. 2016;5(10) https://doi.org/10.1161/JAHA.116.003231.

  159. Moraes MR, Bacurau RF, Simoes HG, Campbell CS, Pudo MA, Wasinski F, et al. Effect of 12 weeks of resistance exercise on post-exercise hypotension in stage 1 hypertensive individuals. J Hum Hypertens. 2012;26(9):533–9.

    Article  CAS  PubMed  Google Scholar 

  160. Mota MR, de Oliveira RJ, Dutra MT, Pardono E, Terra DF, Lima RM, et al. Acute and chronic effects of resistive exercise on blood pressure in hypertensive elderly women. J Strength Cond Res. 2013;27(12):3475–80.

    Article  PubMed  Google Scholar 

  161. Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, et al. Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the American Heart Association. Hypertension. 2013;61(6):1360–83.

    Article  CAS  PubMed  Google Scholar 

  162. Inder JD, Carlson DJ, Dieberg G, McFarlane JR, Hess NC, Smart NA. Isometric exercise training for blood pressure management: a systematic review and meta-analysis to optimize benefit. Hypertens Res. 2016;39(2):88–94.

    Article  PubMed  Google Scholar 

  163. Millar PJ, McGowan CL, Cornelissen VA, Araujo CG, Swaine IL. Evidence for the role of isometric exercise training in reducing blood pressure: potential mechanisms and future directions. Sports Med. 2014;44(3):345–56.

    Article  PubMed  Google Scholar 

  164. Carlson DJ, Dieberg G, Hess NC, Millar PJ, Smart NA. Isometric exercise training for blood pressure management: a systematic review and meta-analysis. Mayo Clin Proc. 2014;89(3):327–34.

    Article  PubMed  Google Scholar 

  165. Hurley BF, Hanson ED, Sheaff AK. Strength training as a countermeasure to aging muscle and chronic disease. Sports Med. 2011;41(4):289–306.

    Article  PubMed  Google Scholar 

  166. Ash GI, Taylor BA, Thompson PD, MacDonald HV, Lamberti L, Chen MH, et al. The antihypertensive effects of aerobic versus isometric handgrip resistance exercise. J Hypertens. 2017;35(2):291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Goessler K, Buys R, Cornelissen VA. Low-intensity isometric handgrip exercise has no transient effect on blood pressure in patients with coronary artery disease. J Am Soc Hypertens. 2016;10(8):633–9.

    Article  PubMed  Google Scholar 

  168. Olher Rdos R, Bocalini DS, Bacurau RF, Rodriguez D, Figueira A Jr, Pontes FL Jr, et al. Isometric handgrip does not elicit cardiovascular overload or post-exercise hypotension in hypertensive older women. Clin Interv Aging. 2013;8:649–55.

    PubMed  Google Scholar 

  169. van Assche T, Buys R, de Jaeger M, Coeckelberghs E, Cornelissen VA. One single bout of low-intensity isometric handgrip exercise reduces blood pressure in healthy pre- and hypertensive individuals. J Sports Med Phys Fitness. 2017;57(4):469–75.

    PubMed  Google Scholar 

  170. Souza LR, Vicente JB, Melo GR, Moraes VC, Olher RR, Sousa IC, et al. Acute hypotension after moderate-intensity handgrip exercise in hypertensive elderly people. J Strength Cond Res. 2018;32(10):2971–7.

    Article  PubMed  Google Scholar 

  171. Carlson DJ, Inder J, Palanisamy SK, McFarlane JR, Dieberg G, Smart NA. The efficacy of isometric resistance training utilizing handgrip exercise for blood pressure management: a randomized trial. Medicine (Baltimore). 2016;95(52):e5791.

    Article  Google Scholar 

  172. Goessler KF, Buys R, VanderTrappen D, Vanhumbeeck L, Cornelissen VA. A randomized controlled trial comparing home-based isometric handgrip exercise versus endurance training for blood pressure management. J Am Soc Hypertens. 2018;12:285–93.

    Article  PubMed  Google Scholar 

  173. Badrov MB, Horton S, Millar PJ, McGowan CL. Cardiovascular stress reactivity tasks successfully predict the hypotensive response of isometric handgrip training in hypertensives. Psychophysiology. 2013;50(4):407–14.

    Article  PubMed  Google Scholar 

  174. Stiller-Moldovan C, Kenno K, McGowan CL. Effects of isometric handgrip training on blood pressure (resting and 24 h ambulatory) and heart rate variability in medicated hypertensive patients. Blood Press Monit. 2012;17(2):55–61.

    Article  PubMed  Google Scholar 

  175. Taylor AC, McCartney N, Kamath MV, Wiley RL. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35(2):251–6.

    Article  PubMed  Google Scholar 

  176. Corso LM, MacDonald HV, Johnson BT, Farinatti P, Livingston J, Zaleski AL, et al. Is concurrent training efficacious antihypertensive therapy? A meta-analysis. Med Sci Sports Exerc. 2016;48(12):2398–406.

    Article  CAS  PubMed  Google Scholar 

  177. Pagonas N, Vlatsas S, Bauer F, Seibert FS, Zidek W, Babel N, et al. Aerobic versus isometric handgrip exercise in hypertension: a randomized controlled trial. J Hypertens. 2017;35(11):2199–206.

    Article  CAS  PubMed  Google Scholar 

  178. McGowan CL, Proctor DN, Swaine I, Brook RD, Jackson EA, Levy PD. Isometric handgrip as an adjunct for blood pressure control: a primer for clinicians. Curr Hypertens Rep. 2017;19(6):51. 017-0748-8.

    Article  PubMed  Google Scholar 

  179. MacDonald HV, Farinatti PV, Lamberti LM, Pescatello LS. Chapter 3. the effects of concurrent exercise on hypertension: current consensus and emerging research. In: Pescatello LS, editor. Effects of exercise on hypertension: from cells to physiological systems. Cham: Springer International Publishing; 2015. p. 47–86.

    Chapter  Google Scholar 

  180. Tibana RA, Nascimento Dda C, de Sousa NM, de Almeida JA, Moraes MR, Durigan JL, et al. Similar hypotensive effects of combined aerobic and resistance exercise with 1 set versus 3 sets in women with metabolic syndrome. Clin Physiol Funct Imaging. 2015;35(6):443–50.

    Article  PubMed  Google Scholar 

  181. Anunciacao PG, Farinatti PT, Goessler KF, Casonatto J, Polito MD. Blood pressure and autonomic responses following isolated and combined aerobic and resistance exercise in hypertensive older women. Clin Exp Hypertens. 2016;38(8):710–4.

    Article  PubMed  Google Scholar 

  182. Azevedo LM, de Souza AC, Santos LE, Miguel Dos Santos R, de Fernandes MO, Almeida JA, et al. Fractionated concurrent exercise throughout the day does not promote acute blood pressure benefits in hypertensive middle-aged women. Front Cardiovasc Med. 2017;4:6.

    PubMed  PubMed Central  Google Scholar 

  183. Dos Santos ES, Asano RY, Gomes Filho I, Nilson Lima L, Panelli P, Nascimento DD, et al. Acute and chronic cardiovascular response to 16 weeks of combined eccentric or traditional resistance and aerobic training in elderly hypertensive women: a randomized controlled trial. J Strength Cond Res. 2014;28(11):3073–84.

    Article  PubMed  Google Scholar 

  184. Meneses AL, Forjaz CL, de Lima PF, Batista RM, Monteiro MD, Ritti-Dias RM. Influence of endurance and resistance exercise order on the post-exercise hemodynamic responses in hypertensive women. J Strength Cond Res. 2015;29(3):612–8.

    Article  PubMed  Google Scholar 

  185. Hayashino Y, Jackson JL, Fukumori N, Nakamura F, Fukuhara S. Effects of supervised exercise on lipid profiles and blood pressure control in people with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2012;98(3):349–60.

    Article  CAS  PubMed  Google Scholar 

  186. Romero SA, Minson CT, Halliwill JR. The cardiovascular system after exercise. J Appl Physiol. 2017;122(4):925–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayley V. MacDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacDonald, H.V., Pescatello, L.S. (2019). Exercise and Blood Pressure Control in Hypertension. In: Kokkinos, P., Narayan, P. (eds) Cardiorespiratory Fitness in Cardiometabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-04816-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04816-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04815-0

  • Online ISBN: 978-3-030-04816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics