Skip to main content

Exercise Metabolism in Health and Disease

  • Chapter
  • First Online:
Cardiorespiratory Fitness in Cardiometabolic Diseases

Abstract

Maintaining metabolic homeostasis is of paramount importance for the human organism. Accordingly, adenosine triphosphate (ATP) levels, the energy currency of the human body, are adequately maintained in skeletal and heart muscle by the continuous formation of ATP aerobically and anaerobically. The main substrates used for ATP formation are phosphocreatine, carbohydrates, and free fatty acids, while branched-chain amino acids contribute to a smaller extent. The main factor dictating the dominant metabolic pathway and the type of substrate used is exercise intensity, whereas other factors such as exercise duration, fitness status, gender, diet, and environmental conditions may also influence exercise metabolism. The metabolic pathways do not function independently. Rather, they interact via extracellular and intracellular signals from the exercising muscles and communicate with distant organs such as the liver, heart, and brain. Moreover, hormones secreted by cells of the endocrine system regulate activity of cells in other parts of the body, they can be released in response to exercise-induced stress, and, among other multiple functions, they modulate metabolism during exercise. Several clinical implications for health benefits of special populations rely on exercise metabolism alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-RM:

One-repetition maximum

Acetyl-CoA:

Acetyl coenzyme A

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

AT:

Anaerobic threshold

ATP:

Adenosine triphosphate

ATPase:

Adenosine triphosphatase

BCAA:

Branched-chain amino acids

BCOADH:

Branched-chain 2-oxoacid dehydrogenase

CK:

Creatine kinase

CPK:

Creatine phosphokinase

Cr:

Creatine

FADH2:

Flavin adenine dinucleotide

FAT/CD 36:

Fatty acid translocase

FATP:

Fatty acid transport protein

FFA:

Free fatty acids

FT:

Free testosterone

G-6-P:

Glucose-6-phosphate

GH:

Growth hormone

GLUT4:

Glucose transporter type 4

GSDV:

Glycogen storage disease type V

HbA1c:

(Glycated) hemoglobin A1c

HDL-C:

High-density lipoprotein cholesterol

HGP:

Hepatic glucose output

HIF-1:

Hypoxia-inducible factor-1

HIIT:

High-intensity interval training

HSL:

Hormone-sensitive lipase

IGF-1:

Insulin-like growth factor-1

IL:

Interleukin

IMP:

Inosine monophosphate

LDH:

Lactate dehydrogenase

LDL-C:

Low-density lipoprotein cholesterol

LDM:

Low-density microsomes

LT:

Lactate threshold

MCT1:

Monocarboxylate transporter 1

mPTP:

Mitochondrial permeability transition pore

MTGL:

Muscle triacylglycerol lipase

NAD:

Nicotinamide adenine dinucleotide

NADH:

Reduced form of NAD

NH4+:

Ammonium

NO:

Nitric oxide

PCr:

Phosphocreatine

PDH:

Pyruvate dehydrogenase complex

PFK:

Phosphofructokinase

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PHOS:

Glycogen phosphorylase

RER:

Respiratory exchange ratio

ROS:

Reactive oxygen species

SHBG:

Sex hormone-binding globulin

SIRTs:

Sirtuins

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors

T1D:

Diabetes mellitus type 1

T2D:

Diabetes mellitus type 2

TCA:

Tricarboxylic acid cycle

TGs:

Triglycerides

VCO2:

Volume of carbon dioxide expired

VE:

Volume of air inspired or expired

VLDL-C:

Very low-density lipoprotein cholesterol

VO2:

Volume of oxygen uptake

VO2max:

Maximal oxygen uptake

References

  1. Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall JD. Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol (1985). 1993;75:2134–41.

    Article  CAS  Google Scholar 

  2. Tarnopolsky MA, Atkinson SA, Phillips SM, MacDougall JD. Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol (1985). 1995;78:1360–8.

    Article  CAS  Google Scholar 

  3. Wagenmakers AJ. Muscle amino acid metabolism at rest and during exercise: Role in human physiology and metabolism. Exerc Sport Sci Rev. 1998;26:287–314.

    Article  CAS  PubMed  Google Scholar 

  4. Greenhaff PL, Nevill ME, Soderlund K, Bodin K, Boobis LH, Williams C, et al. The metabolic responses of human type i and ii muscle fibres during maximal treadmill sprinting. J Physiol. 1994;478(Pt 1):149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol. 1995;482(Pt 2):467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsintzas OK, Williams C, Boobis L, Greenhaff P. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol (1985). 1996;81:801–9.

    Article  CAS  Google Scholar 

  7. Sargeant AJ. Structural and functional determinants of human muscle power. Exp Physiol. 2007;92:323–31.

    Article  CAS  PubMed  Google Scholar 

  8. Scott W, Stevens J, Binder-Macleod SA. Human skeletal muscle fiber type classifications. Phys Ther. 2001;81:1810–6.

    CAS  PubMed  Google Scholar 

  9. Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000;50:500–9.

    Article  CAS  PubMed  Google Scholar 

  10. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–531.

    Article  CAS  PubMed  Google Scholar 

  11. Astrand P-O, Rodahl K, Dahl HA, Stromme B. Textbook of work physiology. Physiological bases of exercise. Champaign: Human Kinetics; 2003.

    Google Scholar 

  12. Zierath JR, Hawley JA. Skeletal muscle fiber type: Influence on contractile and metabolic properties. PLoS Biol. 2004;2:e348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sale DG. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15:95–151.

    Article  CAS  PubMed  Google Scholar 

  14. Pette D. The adaptive potential of skeletal muscle fibers. Can J Appl Physiol. 2002;27:423–48.

    Article  PubMed  Google Scholar 

  15. Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol. 2016;5:518–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greenhaff PL, Soderlund K, Ren JM, Hultman E. Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation. J Physiol. 1993;460:443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gray SR, Soderlund K, Ferguson RA. ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures. J Sports Sci. 2008;26:701–7.

    Google Scholar 

  18. Kent-Braun JA, Fitts RH, Christie A. Skeletal muscle fatigue. Compr Physiol. 2012;2:997–1044.

    PubMed  Google Scholar 

  19. Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab. 2010;2010:905612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tesch PA, Thorsson A, Fujitsuka N. Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise. J Appl Physiol (1985). 1989;66:1756–9.

    Article  CAS  Google Scholar 

  21. Sahlin K, Soderlund K, Tonkonogi M, Hirakoba K. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise. Am J Physiol. 1997;273:C172–8.

    Article  CAS  PubMed  Google Scholar 

  22. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992;83:367–74.

    Article  CAS  Google Scholar 

  23. Solis MY, Artioli GG, Otaduy MCG, Leite CDC, Arruda W, Veiga RR, et al. Effect of age, diet, and tissue type on PCr response to creatine supplementation. J Appl Physiol (1985). 2017;123:407–14.

    Google Scholar 

  24. Gollnick PD. Energy metabolism and prolonged exercise. In: Lamb DR, Murray M, editors. Perspectives in exercise science and sports medicine, volume 1:prolonged exercise. Indianapolis: Benchmark Press; 1988. p. 1–42.

    Google Scholar 

  25. Gejl KD, Ortenblad N, Andersson E, Plomgaard P, Holmberg HC, Nielsen J. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol. 2017;595:2809–21.

    Article  CAS  PubMed  Google Scholar 

  26. Hearris MA, Hammond KM, Fell JM, Morton JP. Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. Nutrients. 2018;10:1–21.

    Google Scholar 

  27. Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJ. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311:E543–53.

    Article  PubMed  Google Scholar 

  28. Hawley JA, Schabort EJ, Noakes TD, Dennis SC. Carbohydrate-loading and exercise performance. An update. Sports Med. 1997;24:73–81.

    Article  CAS  PubMed  Google Scholar 

  29. Stevenson EJ, Thelwall PE, Thomas K, Smith F, Brand-Miller J, Trenell MI. Dietary glycemic index influences lipid oxidation but not muscle or liver glycogen oxidation during exercise. Am J Physiol Endocrinol Metab. 2009;296:E1140–7.

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez JT, Fuchs CJ, Smith FE, Thelwall PE, Taylor R, Stevenson EJ, Trenell MI, Cermak NM, van Loon LJ. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Am J Physiol Endocrinol Metab. 2015;309:E1032–9.

    Article  CAS  PubMed  Google Scholar 

  31. Tsintzas OK, Williams C, Boobis L, Greenhaff P. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol. 1995;489(Pt 1):243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tarnopolsky MA, Zawada C, Richmond LB, Carter S, Shearer J, Graham T, et al. Gender differences in carbohydrate loading are related to energy intake. J Appl Physiol (1985). 2001;91:225–30.

    Article  CAS  Google Scholar 

  33. Walker JL, Heigenhauser GJ, Hultman E, Spriet LL. Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol (1985). 2000;88:2151–8.

    Article  CAS  Google Scholar 

  34. Shin YS. Glycogen storage disease: Clinical, biochemical, and molecular heterogeneity. Semin Pediatr Neurol. 2006;13:115–20.

    Article  PubMed  Google Scholar 

  35. Fleck SJ. Body composition of elite American athletes. Am J Sports Med. 1983;11:398–403.

    Article  CAS  PubMed  Google Scholar 

  36. Essen B, Jansson E, Henriksson J, Taylor AW, Saltin B. Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand. 1975;95:153–65.

    Article  CAS  PubMed  Google Scholar 

  37. Watt MJ, Heigenhauser GJ, Spriet LL. Intramuscular triacylglycerol utilization in human skeletal muscle during exercise: Is there a controversy? J Appl Physiol (1985). 2002;93:1185–95.

    Article  CAS  Google Scholar 

  38. Wendling PS, Peters SJ, Heigenhauser GJ, Spriet LL. Variability of triacylglycerol content in human skeletal muscle biopsy samples. J Appl Physiol (1985). 1996;81:1150–5.

    Article  CAS  Google Scholar 

  39. Stellingwerff T, Boon H, Jonkers RA, Senden JM, Spriet LL, Koopman R, et al. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies. Am J Physiol Endocrinol Metab. 2007;292:E1715–23.

    Article  CAS  PubMed  Google Scholar 

  40. Newsholme EA, Leech AR. Biochemistry for the medical sciences. Chichester: Wiley; 1983.

    Google Scholar 

  41. Metzeger JM. Mechanism of chemomechanical coupling in skeletal muscle during work. In: Lamb DR, Gisolfi CV, editors. Energy metabolism in exercise and sport, vol. 5. Dubuque: Brown & Benchmark; 1992. p. 1–51.

    Google Scholar 

  42. Spriet LL. Anaerobic metabolism during exercise. In: Hargreaves M, Spriet L, editors. Exercise metabolism. Champaign: Human Kinetics; 2006. p. 7–27.

    Google Scholar 

  43. Kenney LW, Wilmore JH, Costill DL. Physiology of sport and exercise. 5th ed. Champaign: Human Kinetics, Champaign, IL; 2012.

    Google Scholar 

  44. MacLaren D, Morton J. Biochemistry for sport and exercise metabolism. Champaign: Wiley-Blackwell; 2011.

    Google Scholar 

  45. Sahlin K. Metabolic factors in fatigue. In: Hargreaves M, Spriet L, editors. Exercise metabolism. Champaign: Human Kinetics; 2006. p. 163–86.

    Google Scholar 

  46. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th ed. New York: W.H. Freeman and Company; 2002.

    Google Scholar 

  47. Chasiotis D. The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle. Acta Physiol Scand Suppl. 1983;518:1–68.

    CAS  PubMed  Google Scholar 

  48. Rush JW, Spriet LL. Skeletal muscle glycogen phosphorylase a kinetics: Effects of adenine nucleotides and caffeine. J Appl Physiol (1985). 2001;91:2071–8.

    Article  CAS  Google Scholar 

  49. Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977;43:695–9.

    Google Scholar 

  50. Dyck DJ, Peters SJ, Wendling PS, Chesley A, Hultman E, Spriet LL. Regulation of muscle glycogen phosphorylase activity during intense aerobic cycling with elevated FFA. Am J Phys. 1996;270:E116–25.

    Google Scholar 

  51. Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol (1985). 1995;78:288–92.

    Article  CAS  Google Scholar 

  52. Howlett KF, Spriet LL, Hargreaves M. Carbohydrate metabolism during exercise in females: effect of reduced fat availability. Metabolism. 2001;50:481–7.

    Article  CAS  PubMed  Google Scholar 

  53. Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol. 2018;118:691–728.

    Article  CAS  PubMed  Google Scholar 

  54. Brooks GA. Lactate: link between glycolytic and oxidative metabolism. Sports Med. 2007;37:341–3.

    Article  PubMed  Google Scholar 

  55. O’Brien MJ, Viguie CA, Mazzeo RS, Brooks GA. Carbohydrate dependence during marathon running. Med Sci Sports Exerc. 1993;25:1009–17.

    PubMed  Google Scholar 

  56. Robergs RA, Roberts SO. Exercise physiology. Exercise, performance, and clinical applications. Boston: WCB, McGraw-Hill; 1997.

    Google Scholar 

  57. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558:5–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Margaria R, Edwards RHT, Dill DB. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol. 1933;106:689–715.

    Article  CAS  Google Scholar 

  59. Bergman BC, Wolfel EE, Butterfield GE, Lopaschuk GD, Casazza GA, Horning MA, et al. Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol (1985). 1999;87:1684–96.

    Article  CAS  Google Scholar 

  60. Nielsen HB, Clemmesen JO, Skak C, Ott P, Secher NH. Attenuated hepatosplanchnic uptake of lactate during intense exercise in humans. J Appl Physiol (1985). 2002;92:1677–83.

    Article  CAS  Google Scholar 

  61. Mangia S, Garreffa G, Bianciardi M, Giove F, Di Salle F, Maraviglia B. The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience. 2003;118:7–10.

    Article  CAS  PubMed  Google Scholar 

  62. Green JM, Hornsby JH, Pritchett RC, Pritchett K. Lactate threshold comparison in anaerobic vs. aerobic athletes and untrained participants. Int J Exerc Sci. 2014;7:329–38.

    Google Scholar 

  63. Brooks GA. The lactate shuttle during exercise and recovery. Med Sci Sports Exerc. 1986;18:360–8.

    Article  CAS  PubMed  Google Scholar 

  64. Goodwin ML, Gladden LB, Nijsten MW, Jones KB. Lactate and cancer: revisiting the warburg effect in an era of lactate shuttling. Front Nutr. 2014;1:27.

    PubMed  Google Scholar 

  65. Nijsten MW, van Dam GM. Hypothesis: using the warburg effect against cancer by reducing glucose and providing lactate. Med Hypotheses. 2009;73:48–51.

    Article  CAS  PubMed  Google Scholar 

  66. Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol. 1964;14:844–52.

    Article  CAS  PubMed  Google Scholar 

  67. Yoshida T, Nagata A, Muro M, Takeuchi N, Suda Y. The validity of anaerobic threshold determination by a douglas bag method compared with arterial blood lactate concentration. Eur J Appl Physiol Occup Physiol. 1981;46:423–30.

    Article  CAS  PubMed  Google Scholar 

  68. Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (obla) and muscle enzymes after training at obla. Eur J Appl Physiol Occup Physiol. 1982;49:45–57.

    Article  CAS  PubMed  Google Scholar 

  69. Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25–63.

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh AK. Anaerobic threshold: its concept and role in endurance sport. Malays J Med Sci. 2004;11:24–36.

    PubMed  PubMed Central  Google Scholar 

  71. Agostoni P, Corra U, Cattadori G, Veglia F, Battaia E, La Gioia R, et al. Prognostic value of indeterminable anaerobic threshold in heart failure. Circ Heart Fail. 2013;6:977–87.

    Article  PubMed  Google Scholar 

  72. Rusko H, Rahkila P, Karvinen E. Anaerobic threshold, skeletal muscle enzymes and fiber composition in young female cross-country skiers. Acta Physiol Scand. 1980;108:263–8.

    Article  CAS  PubMed  Google Scholar 

  73. Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.

    Article  PubMed  Google Scholar 

  74. Kenney LWW, Costill JH, D.L. Physiology of sport and exercise. 5th ed. Champaign: Human Kinetics; 2012.

    Google Scholar 

  75. Jeukendrup AE, Gleeson M. Sports nutrition. An introduction to energy production and performance. 1st ed. Champaign: Human Kinetics; 2004.

    Google Scholar 

  76. Trefts E, Williams AS, Wasserman DH. Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci. 2015;135:203–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kjaer M. Hepatic metabolism during exercise. In: Hargreaves M, Spriet L, editors. Exercise metabolism. Champaign: Human Kinetics; 2006. p. 45–70.

    Google Scholar 

  78. Lavoie C, Ducros F, Bourque J, Langelier H, Chiasson JL. Glucose metabolism during exercise in man: the role of insulin and glucagon in the regulation of hepatic glucose production and gluconeogenesis. Can J Physiol Pharmacol. 1997;75:26–35.

    Article  CAS  PubMed  Google Scholar 

  79. Tuttle KR, Marker JC, Dalsky GP, Schwartz NS, Shah SD, Clutter WE, et al. Glucagon, not insulin, may play a secondary role in defense against hypoglycemia during exercise. Am J Physiol. 1988;254:E713–9.

    CAS  PubMed  Google Scholar 

  80. Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda). 2005;20:260–70.

    CAS  Google Scholar 

  81. Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest. 1974;53:1080–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ahlborg G, Felig P. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. J Clin Invest. 1982;69:45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Katz A, Broberg S, Sahlin K, Wahren J. Leg glucose uptake during maximal dynamic exercise in humans. Am J Physiol. 1986;251:E65–70.

    CAS  PubMed  Google Scholar 

  84. Jeukendrup AE, Raben A, Gijsen A, Stegen JH, Brouns F, Saris WH, et al. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J Physiol. 1999;515(Pt 2):579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Angus DJ, Febbraio MA, Hargreaves M. Plasma glucose kinetics during prolonged exercise in trained humans when fed carbohydrate. Am J Physiol Endocrinol Metab. 2002;283:E573–7.

    Article  CAS  PubMed  Google Scholar 

  86. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.

    Google Scholar 

  87. Merry TL, McConell GK. Skeletal muscle glucose uptake during exercise: a focus on reactive oxygen species and nitric oxide signaling. IUBMB Life. 2009;61:479–84.

    Article  CAS  PubMed  Google Scholar 

  88. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418:261–75.

    Google Scholar 

  89. Katz A. Role of reactive oxygen species in regulation of glucose transport in skeletal muscle during exercise. J Physiol. 2016;594:2787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Watt MJ, Howlett KF, Febbraio MA, Spriet LL, Hargreaves M. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J Physiol. 2001;534:269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Steensberg A, van Hall G, Keller C, Osada T, Schjerling P, Pedersen BK, et al. Muscle glycogen content and glucose uptake during exercise in humans: Influence of prior exercise and dietary manipulation. J Physiol. 2002;541:273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol (1985). 2007;103:1093–8.

    Article  CAS  Google Scholar 

  93. Pedersen L, Hojman P. Muscle-to-organ cross talk mediated by myokines. Adipocyte. 2012;1:164–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88:1379–406.

    Article  CAS  PubMed  Google Scholar 

  95. Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes. 2004;53:1643–8.

    Article  CAS  PubMed  Google Scholar 

  96. Pedersen L, Pilegaard H, Hansen J, Brandt C, Adser H, Hidalgo J, et al. Exercise-induced liver chemokine CXCL-1 expression is linked to muscle-derived interleukin-6 expression. J Physiol. 2011;589:1409–20.

    Google Scholar 

  97. Pedersen BK, Febbraio M. Muscle-derived interleukin-6--a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav Immun. 2005;19:371–6.

    Article  CAS  PubMed  Google Scholar 

  98. Spriet LL. Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc. 2002;34:1477–84.

    Article  CAS  PubMed  Google Scholar 

  99. Horowitz JF. Adipose tissue lipid mobilization during exercise. In: Hargreaves M, Spriet L, editors. Exercise metabolism. Champaign: Human Kinetics; 2006. p. 89–104.

    Google Scholar 

  100. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380–91.

    CAS  PubMed  Google Scholar 

  101. Romijn JA, Coyle EF, Sidossis LS, Zhang XJ, Wolfe RR. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol (1985). 1995;79:1939–45.

    Article  CAS  Google Scholar 

  102. Luiken JJ, Glatz JF, Bonen A. Fatty acid transport proteins facilitate fatty acid uptake in skeletal muscle. Can J Appl Physiol. 2000;25:333–52.

    Article  CAS  PubMed  Google Scholar 

  103. Hargreaves M, Spriet LL. Exercise metabolism: fuels for the fire. Cold Spring Harb Perspect Med. 2018;8(8):1–15.

    Google Scholar 

  104. Holloway GP, Luiken JJ, Glatz JF, Spriet LL, Bonen A. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview. Acta Physiol (Oxf). 2008;194:293–309.

    Google Scholar 

  105. Holloway GP, Bonen A, Spriet LL. Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Am J Clin Nutr. 2009;89:455S–62S.

    Article  CAS  PubMed  Google Scholar 

  106. Tarnopolsky MA. Protein metabolism in strength and endurance activities. In: Lamb DR, Murray R, editors. The metabolic bases of performance in exercise and sport. Carmel: Cooper Publishing Group; 1999. p. 125–63.

    Google Scholar 

  107. Gibala MJ. Effect of exercise on skeletal muscle protein and amino acid metabolism in humans. In: Hargreaves M, Spriet L, editors. Exercise metabolism. Champaign: Human Kinetics; 2006. p. 137–61.

    Google Scholar 

  108. Wagenmakers AJ, Brookes JH, Coakley JH, Reilly T, Edwards RH. Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. Eur J Appl Physiol Occup Physiol. 1989;59:159–67.

    Article  CAS  PubMed  Google Scholar 

  109. Rush JW, MacLean DA, Hultman E, Graham TE. Exercise causes branched-chain oxoacid dehydrogenase dephosphorylation but not AMP deaminase binding. J Appl Physiol (1985). 1995;78:2193–200.

    Google Scholar 

  110. van Hall G, MacLean DA, Saltin B, Wagenmakers AJ. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man. J Physiol. 1996;494(Pt 3):899–905.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wagenmakers AJ, Beckers EJ, Brouns F, Kuipers H, Soeters PB, van der Vusse GJ, et al. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J Physiol. 1991;260:E883–90.

    CAS  PubMed  Google Scholar 

  112. Lemon PW, Mullin JP. Effect of initial muscle glycogen levels on protein catabolism during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1980;48:624–9.

    CAS  PubMed  Google Scholar 

  113. Gibala MJ. Regulation of skeletal muscle amino acid metabolism during exercise. Int J Sport Nutr Exerc Metab. 2001;11:87–108.

    Article  CAS  PubMed  Google Scholar 

  114. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273:E99–107.

    CAS  PubMed  Google Scholar 

  115. Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR. Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol (1985). 2000;88:1707–14.

    Article  CAS  Google Scholar 

  116. Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc. 2002;34:92–7.

    Article  PubMed  Google Scholar 

  117. Coyle EF, Jeukendrup AE, Wagenmakers AJ, Saris WH. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol. 1997;273:E268–75.

    CAS  PubMed  Google Scholar 

  118. Sidossis LS, Gastaldelli A, Klein S, Wolfe RR. Regulation of plasma fatty acid oxidation during low- and high-intensity exercise. Am J Physiol. 1997;272:E1065–70.

    CAS  PubMed  Google Scholar 

  119. Bergman BC, Brooks GA. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J Appl Physiol (1985). 1999;86:479–87.

    Article  CAS  Google Scholar 

  120. Edwards HT, Margaria R, Dill DB. Metabolic rate, blood sugar and utilization of carbohydrate. Am J Physiol. 1934;108:203–9.

    Article  CAS  Google Scholar 

  121. Martin WH. Effect of endurance training on fatty acid metabolism during whole body exercise. Med Sci Sports Exerc. 1997;29:635–9.

    Article  CAS  PubMed  Google Scholar 

  122. Kiens B. Effect of endurance training on fatty acid metabolism: Local adaptations. Med Sci Sports Exerc. 1997;29:640–5.

    Article  CAS  PubMed  Google Scholar 

  123. Nicklas BJ. Effects of endurance exercise on adipose tissue metabolism. Exerc Sport Sci Rev. 1997;25:77–103.

    Article  CAS  PubMed  Google Scholar 

  124. Krogh AL, J. The relative value of fat and carbohydrate as sources of muscular energy. Biochem J. 1920;14:290–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jeukendrup AE. Periodized nutrition for athletes. Sports Med. 2017;47:51–63.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol (1985). 1991;71:1082–8.

    Article  CAS  Google Scholar 

  127. Chryssanthopoulos C, Williams C. Pre-exercise carbohydrate meal and endurance running capacity when carbohydrates are ingested during exercise. Int J Sports Med. 1997;18:543–8.

    Article  CAS  PubMed  Google Scholar 

  128. Chryssanthopoulos C, Williams C, Nowitz A, Kotsiopoulou C, Vleck V. The effect of a high carbohydrate meal on endurance running capacity. Int J Sport Nutr Exerc Metab. 2002;12:157–71.

    Article  CAS  PubMed  Google Scholar 

  129. Montain SJ, Hopper MK, Coggan AR, Coyle EF. Exercise metabolism at different time intervals after a meal. J Appl Physiol (1985). 1991;70:882–8.

    Article  CAS  Google Scholar 

  130. Febbraio MA. Temperature, muscle metabolism and performance. In: Lamb DR, Murray R, editors. The metabolic basis of performance in exercise and sport. Traverse City: Cooper Publishing Group; 1999. p. 315–53.

    Google Scholar 

  131. Devries MC. Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in women. Exp Physiol. 2016;101:243–9.

    Article  PubMed  Google Scholar 

  132. Brockman NK, Yardley JE. Sex-related differences in fuel utilization and hormonal response to exercise: implications for individuals with type 1 diabetes. Appl Physiol Nutr Metab. 2018;43(6):541–52.

    Google Scholar 

  133. Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. J Appl Physiol (1985). 1990;68:302–8.

    Article  CAS  Google Scholar 

  134. Horton TJ, Pagliassotti MJ, Hobbs K, Hill JO. Fuel metabolism in men and women during and after long-duration exercise. J Appl Physiol (1985). 1998;85:1823–32.

    Article  CAS  Google Scholar 

  135. Marliss EB, Kreisman SH, Manzon A, Halter JB, Vranic M, Nessim SJ. Gender differences in glucoregulatory responses to intense exercise. J Appl Physiol (1985). 2000;88:457–66.

    Article  CAS  Google Scholar 

  136. Hamadeh MJ, Devries MC, Tarnopolsky MA. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J Clin Endocrinol Metab. 2005;90:3592–9.

    Article  CAS  PubMed  Google Scholar 

  137. Boisseau N, Delamarche P. Metabolic and hormonal responses to exercise in children and adolescents. Sports Med. 2000;30:405–22.

    Article  CAS  PubMed  Google Scholar 

  138. Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40:207–27.

    Article  PubMed  Google Scholar 

  139. Numao S, Hayashi Y, Katayama Y, Matsuo T, Tanaka K. Sex differences in substrate oxidation during aerobic exercise in obese men and postmenopausal obese women. Metabolism. 2009;58:1312–9.

    Article  CAS  PubMed  Google Scholar 

  140. Devries MC, Hamadeh MJ, Graham TE, Tarnopolsky MA. 17beta-estradiol supplementation decreases glucose rate of appearance and disappearance with no effect on glycogen utilization during moderate intensity exercise in men. J Clin Endocrinol Metab. 2005;90:6218–25.

    Article  CAS  PubMed  Google Scholar 

  141. Devries MC, Hamadeh MJ, Phillips SM, Tarnopolsky MA. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1120–8.

    Article  CAS  PubMed  Google Scholar 

  142. Isacco L, Duche P, Boisseau N. Influence of hormonal status on substrate utilization at rest and during exercise in the female population. Sports Med. 2012;42:327–42.

    Article  PubMed  Google Scholar 

  143. Kraemer RR, Heleniak RJ, Tryniecki JL, Kraemer GR, Okazaki NJ, Castracane VD. Follicular and luteal phase hormonal responses to low-volume resistive exercise. Med Sci Sports Exerc. 1995;27:809–17.

    Article  CAS  PubMed  Google Scholar 

  144. Riddell MC, Partington SL, Stupka N, Armstrong D, Rennie C, Tarnopolsky MA. Substrate utilization during exercise performed with and without glucose ingestion in female and male endurance trained athletes. Int J Sport Nutr Exerc Metab. 2003;13:407–21.

    Article  CAS  PubMed  Google Scholar 

  145. Copeland JL, Consitt LA, Tremblay MS. Hormonal responses to endurance and resistance exercise in females aged 19-69 years. J Gerontol A Biol Sci Med Sci. 2002;57:B158–65.

    Article  PubMed  Google Scholar 

  146. Fragala MS, Kraemer WJ, Denegar CR, Maresh CM, Mastro AM, Volek JS. Neuroendocrine-immune interactions and responses to exercise. Sports Med. 2011;41:621–39.

    Article  PubMed  Google Scholar 

  147. Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup IL, Richter EA, et al. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol Endocrinol Metab. 2002;282:E435–47.

    Article  CAS  PubMed  Google Scholar 

  148. Steffensen CH, Roepstorff C, Madsen M, Kiens B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab. 2002;282:E634–42.

    Article  CAS  PubMed  Google Scholar 

  149. Taegtmeyer H. Cardiomyocyte metabolism: all is in flux. Muscle Fundamental Biol Mech Dis. 2012;1:187–202.

    CAS  Google Scholar 

  150. Abdel-aleem S, Lowe JE, editors. Cardiac metabolism in health and disease. Dordrecht: Springer Science+Business Media, B.V; 1998.

    Google Scholar 

  151. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  CAS  PubMed  Google Scholar 

  152. Lopaschuk GD, Dhalla NS, editors. Cardiac energy metabolism in health and disease. New York: Springer; 2014.

    Google Scholar 

  153. Schwarzer M, Doenst T, editors. The scientist’s guide to cardiac metabolism. Amsterdam: Academic; 2016.

    Google Scholar 

  154. Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, et al. American Heart Association Council on Basic Cardiovascular Sciences. Assessing cardiac metabolism: a scientific statement from the American heart association. Circ Res. 2016;118:1659–701.

    Google Scholar 

  155. Lopaschuk GD, Kelly DP. Signalling in cardiac metabolism. Cardiovasc Res. 2008;79:205–7.

    Article  CAS  PubMed  Google Scholar 

  156. Keul J. Myocardial metabolism in athletes. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York/London: Plenum Press; 1971.

    Google Scholar 

  157. Kaijser L, Lassers BW, Wahlqvist ML, Carlson LA. Myocardial lipid and carbohydrate metabolism in fasting men during prolonged exercise. J Appl Physiol. 1972;32:847–58.

    Article  CAS  PubMed  Google Scholar 

  158. Lassers BW, Wahlqvist ML, Kaijser L, Carlson LA. Effect of nicotinic acid on myocardial metabolism in man at rest and during exercise. J Appl Physiol. 1972;33:72–80.

    Article  CAS  PubMed  Google Scholar 

  159. Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest. 1988;82:2017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Stanley WC. Myocardial lactate metabolism during exercise. Med Sci Sports Exerc. 1991;23:920–4.

    Article  CAS  PubMed  Google Scholar 

  161. Kaijser L, Berglund B. Myocardial lactate extraction and release at rest and during heavy exercise in healthy men. Acta Physiol Scand. 1992;144:39–45.

    Article  CAS  PubMed  Google Scholar 

  162. Kemppainen J, Fujimoto T, Kalliokoski KK, Viljanen T, Nuutila P, Knuuti J. Myocardial and skeletal muscle glucose uptake during exercise in humans. J Physiol. 2002;542:403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bing RJ. The metabolism of the heart. Trans Am Coll Cardiol. 1955;5:8–14.

    CAS  PubMed  Google Scholar 

  164. Bremer J, Wojtczak AB. Factors controlling the rate of fatty acid -oxidation in rat liver mitochondria. Biochim Biophys Acta. 1972;280:515–30.

    Article  CAS  PubMed  Google Scholar 

  165. Williamson JR, Krebs HA. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J. 1961;80:540–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zimmerman AN, Meijler FL, Hulsmann WC. The inhibitory effect of acetoacetate on myocardial contraction. Lancet. 1962;2:757–8.

    Article  CAS  PubMed  Google Scholar 

  167. Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980;186:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Krebs HA. Some aspects of the regulation of fuel supply in omnivorous animals. Adv Enzyme Regul. 1972;10:397–420.

    Article  CAS  PubMed  Google Scholar 

  169. Balaban RS. Cardiac energy metabolism homeostasis: Role of cytosolic calcium. J Mol Cell Cardiol. 2002;34:1259–71.

    Article  CAS  PubMed  Google Scholar 

  170. Balaban RS, Kantor HL, Katz LA, Briggs RW. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science. 1986;232:1121–3.

    Article  CAS  PubMed  Google Scholar 

  171. Kupriyanov VV, Lakomkin VL, Kapelko VI, Steinschneider A, Ruuge EK, Saks VA. Dissociation of adenosine triphosphate levels and contractile function in isovolumic hearts perfused with 2-deoxyglucose. J Mol Cell Cardiol. 1987;19:729–40.

    Article  CAS  PubMed  Google Scholar 

  172. Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev. 2002;7:115–30.

    Article  CAS  PubMed  Google Scholar 

  173. Gollnick PD. Metabolic regulation in skeletal muscle: influence of endurance training as exerted by mitochondrial protein concentration. Acta Physiol Scand Suppl. 1986;556:53–66.

    CAS  PubMed  Google Scholar 

  174. Kuno S, Ogawa T, Katsuta S, Itai Y. In vivo human myocardial metabolism during aerobic exercise by phosphorus-31 nuclear magnetic resonance spectroscopy. Eur J Appl Physiol Occup Physiol. 1994;69:488–91.

    Article  CAS  PubMed  Google Scholar 

  175. Balaban RS, Heineman FW. Control of mitochondrial respiration in the heart in vivo. Mol Cell Biochem. 1989;89:191–7.

    Article  CAS  PubMed  Google Scholar 

  176. Grubbstrom J, Berglund B, Kaijser L. Myocardial blood flow and lactate metabolism at rest and during exercise with reduced arterial oxygen content. Acta Physiol Scand. 1991;142:467–74.

    Article  CAS  PubMed  Google Scholar 

  177. Jansson E, Sylven C. Activities of key enzymes in the energy metabolism of human myocardial and skeletal muscle. Clin Physiol. 1986;6:465–71.

    Article  CAS  PubMed  Google Scholar 

  178. Conway MA, Bristow JD, Blackledge MJ, Rajagopalan B, Radda GK. Cardiac metabolism during exercise in healthy volunteers measured by 31P magnetic resonance spectroscopy. Br Heart J. 1991;65:25–30.

    Google Scholar 

  179. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, et al. Transcriptional coactivator pgc-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1:259–71.

    Article  CAS  PubMed  Google Scholar 

  180. Goodwin GW, Taegtmeyer H. Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol. 2000;279:H1490–501.

    Article  CAS  PubMed  Google Scholar 

  181. Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem. 1998;273:29530–9.

    Article  CAS  PubMed  Google Scholar 

  182. Goodwin GW, Ahmad F, Doenst T, Taegtmeyer H. Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. Am J Physiol. 1998;274:H1239–47.

    CAS  PubMed  Google Scholar 

  183. Chatham JC. Lactate – the forgotten fuel! J Physiol. 2002;542:333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, et al. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;542:33ra37.

    Google Scholar 

  185. Mann N, Rosenzweig A. Can exercise teach us how to treat heart disease? Circulation. 2012;126:2625–35.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460:587–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res. 2008;11:139–50.

    Google Scholar 

  188. Pillai VB, Sundaresan NR, Jeevanandam V, Gupta MP. Mitochondrial SIRT3 and heart disease. Cardiovasc Res. 2010;88:250–6.

    Google Scholar 

  189. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. SIRT3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–71.

    Google Scholar 

  190. Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY). 2010;2:914–23.

    Google Scholar 

  191. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451:1008–12.

    Google Scholar 

  192. Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: Part ii: potential mechanisms. Circulation. 2002;105:1861–70.

    Article  CAS  PubMed  Google Scholar 

  193. Hellsten Y, Nyberg M. Cardiovascular adaptations to exercise training. Compr Physiol. 2015;6:1–32.

    PubMed  Google Scholar 

  194. McKenzie DC. Respiratory physiology: adaptations to high-level exercise. Br J Sports Med. 2012;46:381–4.

    Article  PubMed  Google Scholar 

  195. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36:133–49.

    Article  PubMed  Google Scholar 

  196. Hedayatpour N, Falla D. Physiological and neural adaptations to eccentric exercise: mechanisms and considerations for training. Biomed Res Int. 2015;2015:193741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:831–8.

    CAS  PubMed  Google Scholar 

  198. Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol. 2016;101:17–22.

    Article  CAS  PubMed  Google Scholar 

  199. Hood DA, Uguccioni G, Vainshtein A, D'Souza D. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Compr Physiol. 2011;1:1119–34.

    PubMed  Google Scholar 

  200. Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B. Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol. 1993;469:459–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Laughlin MH, Roseguini B. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training versus aerobic endurance training. J Physiol Pharmacol. 2008;59(Suppl 7):71–88.

    PubMed  PubMed Central  Google Scholar 

  202. Green HJ, Jones S, Ball-Burnett ME, Smith D, Livesey J, Farrance BW. Early muscular and metabolic adaptations to prolonged exercise training in humans. J Appl Physiol (1985). 1991;70:2032–8.

    Article  CAS  Google Scholar 

  203. Chesley A, Heigenhauser GJ, Spriet LL. Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am J Physiol. 1996;270:E328–35.

    CAS  PubMed  Google Scholar 

  204. Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM. Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Physiol. 1996;270:E265–72.

    Article  CAS  PubMed  Google Scholar 

  205. Coggan AR, Swanson SC, Mendenhall LA, Habash DL, Kien CL. Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men. Am J Physiol. 1995;268:E375–83.

    CAS  PubMed  Google Scholar 

  206. Mendenhall LA, Swanson SC, Habash DL, Coggan AR. Ten days of exercise training reduces glucose production and utilization during moderate-intensity exercise. Am J Physiol. 1994;266:E136–43.

    CAS  PubMed  Google Scholar 

  207. Bergman BC, Horning MA, Casazza GA, Wolfel EE, Butterfield GE, Brooks GA. Endurance training increases gluconeogenesis during rest and exercise in men. Am J Physiol Endocrinol Metab. 2000;278:E244–51.

    Article  CAS  PubMed  Google Scholar 

  208. Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol (1985). 1990;68:990–6.

    Article  CAS  Google Scholar 

  209. Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol (1985). 1996;81:2182–91.

    Article  CAS  Google Scholar 

  210. Kristiansen S, Gade J, Wojtaszewski JF, Kiens B, Richter EA. Glucose uptake is increased in trained vs. Untrained muscle during heavy exercise. J Appl Physiol (1985). 2000;89:1151–8.

    Article  CAS  Google Scholar 

  211. Phillips SM. Endurance training-induced adaptations in substrate turnover and oxidation. In: Hargreaves M, Spriet L, editors. Exercise metabolism. Champaign: Human Kinetics; 2006. p. 187–213.

    Google Scholar 

  212. Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 2018;15:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. MacRae HS, Dennis SC, Bosch AN, Noakes TD. Effects of training on lactate production and removal during progressive exercise in humans. J Appl Physiol (1985). 1992;72:1649–56.

    Article  CAS  Google Scholar 

  214. Messonnier LA, Emhoff CA, Fattor JA, Horning MA, Carlson TJ, Brooks GA. Lactate kinetics at the lactate threshold in trained and untrained men. J Appl Physiol (1985). 2013;114:1593–602.

    Article  CAS  Google Scholar 

  215. Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;278:E571–9.

    Google Scholar 

  216. Philippou A, Maridaki M, Tenta R, Koutsilieris M. Hormonal responses following eccentric exercise in humans. Hormones (Athens). 2017;16:405–13.

    Google Scholar 

  217. Weicker H, Strobel G. Endocrine regulation of metabolism during exercise. In: Steinacker JM, Ward SA, editors. The physiology and pathophysiology of exercise tolerance. New York: Springer Science & Business Media; 1996.

    Google Scholar 

  218. Benardot D, editor. Advanced sports nutrition. 2nd ed. Champaign: Human Kinetics; 2012.

    Google Scholar 

  219. Nesher R, Karl IE, Kipnis DM. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol. 1985;249:C226–32.

    Article  CAS  PubMed  Google Scholar 

  220. Etgen GJ Jr, Memon AR, Thompson GA Jr, Ivy JL. Insulin- and contraction-stimulated translocation of GTP-binding proteins and GLUT4 protein in skeletal muscle. J Biol Chem. 1993;268:20164–9.

    Google Scholar 

  221. Farrell PA. Exercise effects on regulation of energy metabolism by pancreatic and gut hormones. Perspectives in Exerc Science and Sports Med Energy Supply in Exercise and Sport. 1992;5:383–434.

    Google Scholar 

  222. Ploug T, Galbo H, Richter EA. Increased muscle glucose uptake during contractions: no need for insulin. Am J Physiol. 1984;247:E726–31.

    CAS  PubMed  Google Scholar 

  223. Ploug T, Galbo H, Ohkuwa T, Tranum-Jensen J, Vinten J. Kinetics of glucose transport in rat skeletal muscle membrane vesicles: effects of insulin and contractions. Am J Physiol. 1992;262:E700–11.

    CAS  PubMed  Google Scholar 

  224. Hamada T, Arias EB, Cartee GD. Increased submaximal insulin-stimulated glucose uptake in mouse skeletal muscle after treadmill exercise. J Appl Physiol (1985). 2006;101:1368–76.

    Article  CAS  Google Scholar 

  225. Richter EA, Ploug T, Galbo H. Increased muscle glucose uptake after exercise. No need for insulin during exercise. Diabetes. 1985;34:1041–8.

    Article  CAS  PubMed  Google Scholar 

  226. Slentz CA, Gulve EA, Rodnick KJ, Henriksen EJ, Youn JH, Holloszy JO. Glucose transporters and maximal transport are increased in endurance-trained rat soleus. J Appl Physiol (1985). 1992;73:486–92.

    Article  CAS  Google Scholar 

  227. Flores-Riveros JR, Kaestner KH, Thompson KS, Lane MD. Cyclic AMP-induced transcriptional repression of the insulin-responsive glucose transporter (GLUT4) gene: identification of a promoter region required for down-regulation of transcription. Biochem Biophys Res Commun. 1993;194:1148–54.

    Google Scholar 

  228. Goodyear LJ, Hirshman MF, Valyou PM, Horton ES. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes. 1992;41:1091–9.

    Article  CAS  PubMed  Google Scholar 

  229. Neufer PD, Shinebarger MH, Dohm GL. Effect of training and detraining on skeletal muscle glucose transporter (GLUT4) content in rats. Can J Physiol Pharmacol. 1992;70:1286–90.

    Google Scholar 

  230. Kono T, Robinson FW, Blevins TL, Ezaki O. Evidence that translocation of the glucose transport activity is the major mechanism of insulin action on glucose transport in fat cells. J Biol Chem. 1982;257:10942–7.

    CAS  PubMed  Google Scholar 

  231. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235–61.

    Article  CAS  PubMed  Google Scholar 

  232. Wallberg-Henriksson H. Exercise and diabetes mellitus. Exerc Sport Sci Rev. 1992;20:339–68.

    Article  CAS  PubMed  Google Scholar 

  233. Richter EA, Galbo H, Sonne B, Holst JJ, Christensen NJ. Adrenal medullary control of muscular and hepatic glycogenolysis and of pancreatic hormonal secretion in exercising rats. Acta Physiol Scand. 1980;108:235–42.

    Article  CAS  PubMed  Google Scholar 

  234. Raschka C, Schuhmann R, Plath M, Parzeller M. Changes of hormone values during an ultra long distance run. In: Steinacker JM, Ward SA, editors. The physiology and pathophysiology of exercise tolerance. New York: Springer Science & Business Media; 1996.

    Google Scholar 

  235. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2016.

    Google Scholar 

  236. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 1995.

    Google Scholar 

  237. Wahl P. Hormonal and metabolic responses to high intensity interval training. J Sports Med Doping Stud. 2013;3:1–2.

    Google Scholar 

  238. Wahl P, Zinner C, Achtzehn S, Bloch W, Mester J. Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Hormon IGF Res. 2010;20:380–5.

    Google Scholar 

  239. Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG. Effect of acid-base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol (1985). 1994;76:821–9.

    Article  CAS  Google Scholar 

  241. Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51:494–503.

    Article  PubMed  Google Scholar 

  242. Strobel G, Friedmann B, Jost J, Bartsch P. Plasma and platelet catecholamine and catecholamine sulfate response to various exercise tests. Am J Physiol. 1994;267:E537–43.

    Article  CAS  PubMed  Google Scholar 

  243. Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med. 1980;303:436–44.

    Article  CAS  PubMed  Google Scholar 

  244. Kindermann W, Schnabel A, Schmitt WM, Biro G, Cassens J, Weber F. Catecholamines, growth hormone, cortisol, insulin, and sex hormones in anaerobic and aerobic exercise. Eur J Appl Physiol Occup Physiol. 1982;49:389–99.

    Article  CAS  PubMed  Google Scholar 

  245. Pullinen T, Mero A, MacDonald E, Pakarinen A, Komi PV. Plasma catecholamine and serum testosterone responses to four units of resistance exercise in young and adult male athletes. Eur J Appl Physiol Occup Physiol. 1998;77:413–20.

    Article  CAS  PubMed  Google Scholar 

  246. Justice TD, Hammer GL, Davey RJ, Paramalingam N, Guelfi KJ, Lewis L, et al. Effect of antecedent moderate-intensity exercise on the glycemia-increasing effect of a 30-sec maximal sprint: a sex comparison. Physiol Rep. 2015;3:1–10.

    Google Scholar 

  247. Vierck J, O'Reilly B, Hossner K, Antonio J, Byrne K, Bucci L, Dodson M. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int. 2000;24:263–72.

    Article  CAS  PubMed  Google Scholar 

  248. Galbo H. Endocrine factors in endurance. In: Shepard RJ, Astrand PO, editors. Endurance in sport. Oxford: Blackwell Scientific Publications; 1992.

    Google Scholar 

  249. Philippou A, Maridaki M, Pneumaticos S, Koutsilieris M. The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity. Mol Med. 2014;20:202–14.

    Google Scholar 

  250. Eliakim A, Nemet D, Most G, Rakover N, Pantanowitz M, Meckel Y. Effect of gender on the GH-IGF-I response to anaerobic exercise in young adults. J Strength Cond Res. 2014;28:3411–5.

    Google Scholar 

  251. Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M, et al. Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: characterization of the MGF E peptide actions in vitro. In Vivo. 2009;23:567–75.

    Google Scholar 

  252. Gatti R, De Palo EF, Antonelli G, Spinella P. IGF-I/IGFBP system: metabolism outline and physical exercise. J Endocrinol Investig. 2012;35:699–707.

    Google Scholar 

  253. Lovell DI, Cuneo R, Wallace J, McLellan C. The hormonal response of older men to sub-maximum aerobic exercise: the effect of training and detraining. Steroids. 2012;77:413–8.

    Article  CAS  PubMed  Google Scholar 

  254. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34:513–54.

    Article  PubMed  Google Scholar 

  255. Tamaki T, Uchiyama S, Uchiyama Y, Akatsuka A, Roy RR, Edgerton VR. Anabolic steroids increase exercise tolerance. Am J Physiol Endocrinol Metab. 2001;280:E973–81.

    Article  CAS  PubMed  Google Scholar 

  256. Hackney AC, Hosick KP, Myer A, Rubin DA, Battaglini CL. Testosterone responses to intensive interval versus steady-state endurance exercise. J Endocrinol Invest. 2012;35:947–50.

    Article  CAS  PubMed  Google Scholar 

  257. Kraemer WJ, Gordon SE, Fleck SJ, Marchitelli LJ, Mello R, Dziados JE, et al. Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med. 1991;12:228–35.

    Article  CAS  PubMed  Google Scholar 

  258. Pullinen T, Mero A, Huttunen P, Pakarinen A, Komi PV. Resistance exercise-induced hormonal responses in men, women, and pubescent boys. Med Sci Sports Exerc. 2002;34:806–13.

    Article  CAS  PubMed  Google Scholar 

  259. Davis SN, Galassetti P, Wasserman DH, Tate D. Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man. J Clin Endocrinol Metab. 2000;85:224–30.

    CAS  PubMed  Google Scholar 

  260. Berg U, Enqvist JK, Mattsson CM, Carlsson-Skwirut C, Sundberg CJ, Ekblom B, et al. Lack of sex differences in the IGF-IGBP response to ultra endurance exercise. Scand J Med Sci Sports. 2008;18:706–14.

    Google Scholar 

  261. Horton TJ, Grunwald GK, Lavely J, Donahoo WT. Glucose kinetics differ between women and men, during and after exercise. J Appl Physiol (1985). 2006;100:1883–94.

    Article  CAS  Google Scholar 

  262. Buckley J. Endocrine factors in endurance. In: Maclaren D, Spurway N, editors. Exercise physiology in special populations. Advances in sport and exercise science. Livingstone: Churchill; 2008.

    Google Scholar 

  263. Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25(Suppl 3):1–72.

    Article  PubMed  Google Scholar 

  264. Yardley JE, Hay J, Abou-Setta AM, Marks SD, McGavock J. A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes. Diabetes Res Clin Pract. 2014;106:393–400.

    Article  PubMed  Google Scholar 

  265. Krentz AJ, Bailey CJ. Type 2 diabetes in practice. London: Royal Society of Medicine Press; 2001.

    Google Scholar 

  266. Kokkinos P, Faselis C, Narayan P, Myers J, Nylen E, Sui X, Zhang J, Lavie CJ. Cardiorespiratory fitness and incidence of type 2 diabetes in united states veterans on statin therapy. Am J Med. 2017;130:1192–8.

    Article  PubMed  Google Scholar 

  267. Kokkinos P. Physical activity, health benefits, and mortality risk. ISRN Cardiol. 2012;2012:718789.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Lavie CJ, De Schutter A, Parto P, Jahangir E, Kokkinos P, Ortega FB, et al. Obesity and prevalence of cardiovascular diseases and prognosis-the obesity paradox updated. Prog Cardiovasc Dis. 2016;58:537–47.

    Article  PubMed  Google Scholar 

  269. Nylen ES, Gandhi SM, Kheirbek R, Kokkinos P. Enhanced fitness and renal function in type 2 diabetes. Diabet Med. 2015;32:1342–5.

    Article  CAS  PubMed  Google Scholar 

  270. Kokkinos P, Sheriff H, Kheirbek R. Physical inactivity and mortality risk. Cardiol Res Pract. 2010;2011:924945.

    Google Scholar 

  271. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R, et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;129:S49–73.

    Google Scholar 

  272. Nylen E, Ni D, Myersb J, Manchin C, Plunkett M, Kokkinos P. Cardiorespiratory fitness impact on all-cause mortality in prediabetic veterans. J Endocrinol Metab. 2015;5:215–9.

    Article  CAS  Google Scholar 

  273. Dela F, von Linstow ME, Mikines KJ, Galbo H. Physical training may enhance beta-cell function in type 2 diabetes. Am J Physiol Endocrinol Metab. 2004;287:E1024–31.

    Article  CAS  PubMed  Google Scholar 

  274. Hawley JA. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev. 2004;20:383–93.

    Article  CAS  PubMed  Google Scholar 

  275. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the american diabetes association. Diabetes Care. 2016;39:2065–79.

    Article  PubMed  Google Scholar 

  276. Kerksick CM, Fox E. Sports nutrition needs for child and adolescent athletes. Boca Raton: CRC Press; 2016.

    Book  Google Scholar 

  277. Reyes LM, Davenport MH. Exercise as a therapeutic intervention to optimize fetal weight. Pharmacol Res. 2018;132:160–7.

    Article  PubMed  Google Scholar 

  278. Gallen IW. Exercise for people with type 1 diabetes. Med Sport Sci. 2014;60:141–53.

    Article  PubMed  Google Scholar 

  279. Moser O, Yardley JE, Bracken RM. Interstitial glucose and physical exercise in type 1 diabetes: integrative physiology, technology, and the gap in-between. Nutrients. 2018;10:1–15.

    Google Scholar 

  280. MacDonald MJ. Postexercise late-onset hypoglycemia in insulin-dependent diabetic patients. Diabetes Care. 1987;10:584–8.

    Article  CAS  PubMed  Google Scholar 

  281. Gallen IW, Hume C, Lumb A. Fuelling the athlete with type 1 diabetes. Diabetes Obes Metab. 2011;13:130–6.

    Article  CAS  PubMed  Google Scholar 

  282. Guelfi KJ, Jones TW, Fournier PA. New insights into managing the risk of hypoglycaemia associated with intermittent high-intensity exercise in individuals with type 1 diabetes mellitus: implications for existing guidelines. Sports Med. 2007;37:937–46.

    Article  PubMed  Google Scholar 

  283. Yardley JE, Sigal RJ. Exercise strategies for hypoglycemia prevention in individuals with type 1 diabetes. Diabetes Spectr. 2015;28:32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  284. MacLeod SF, Terada T, Chahal BS, Boule NG. Exercise lowers postprandial glucose but not fasting glucose in type 2 diabetes: a meta-analysis of studies using continuous glucose monitoring. Diabetes Metab Res Rev. 2013;29:593–603.

    Article  CAS  PubMed  Google Scholar 

  285. Colberg SR, Albright AL, Blissmer BJ, Braun B, Chasan-Taber L, Fernhall B, et al. Exercise and type 2 diabetes: American college of sports medicine and the american diabetes association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2010;42:2282–303.

    Article  PubMed  Google Scholar 

  286. De Nardi AT, Tolves T, Lenzi TL, Signori LU, Silva A. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract. 2018;137:149–59.

    Article  PubMed  CAS  Google Scholar 

  287. Lee S, Kim Y. Effects of exercise alone on insulin sensitivity and glucose tolerance in obese youth. Diabetes Metab J. 2013;37:225–32.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, Mikus CR, Myers V, Nauta M, Rodarte RQ, Sparks L, Thompson A, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304:2253–62.

    Google Scholar 

  289. Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305:1790–9.

    Google Scholar 

  290. Kwak HB. Exercise and obesity-induced insulin resistance in skeletal muscle. Integr Med Res. 2013;2:131–8.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Plomgaard P, Weigert C. Do diabetes and obesity affect the metabolic response to exercise? Curr Opin Clin Nutr Metab Care. 2017;20:294–9.

    Article  CAS  PubMed  Google Scholar 

  292. Kopin L, Lowenstein C. Dyslipidemia. Ann Intern Med. 2017;167:ITC81–96.

    Article  PubMed  Google Scholar 

  293. Leon AS, Sanchez OA. Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc. 2001;33:S502–15; discussion S528–509

    Article  CAS  PubMed  Google Scholar 

  294. Breneman CB, Polinski K, Sarzynski MA, Lavie CJ, Kokkinos PF, Ahmed A, et al. The impact of cardiorespiratory fitness levels on the risk of developing atherogenic dyslipidemia. Am J Med. 2016;129:1060–6.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Sui X, Sarzynski MA, Lee DC, Kokkinos PF. Impact of changes in cardiorespiratory fitness on hypertension, dyslipidemia and survival: An overview of the epidemiological evidence. Prog Cardiovasc Dis. 2017;60:56–66.

    Article  PubMed  Google Scholar 

  296. Hayashino Y, Jackson JL, Fukumori N, Nakamura F, Fukuhara S. Effects of supervised exercise on lipid profiles and blood pressure control in people with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2012;98:349–60.

    Article  CAS  PubMed  Google Scholar 

  297. Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44:211–21.

    Article  PubMed  Google Scholar 

  298. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, Suzuki E, Shimano H, Yamamoto S, Kondo K, Ohashi Y, Yamada N, Sone H. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med. 2007;167:999–1008.

    Article  CAS  PubMed  Google Scholar 

  299. Pronk NP. Short term effects of exercise on plasma lipids and lipoproteins in humans. Sports Med. 1993;16:431–48.

    Article  CAS  PubMed  Google Scholar 

  300. Kokkinos PF, Holland JC, Narayan P, Colleran JA, Dotson CO, Papademetriou V. Miles run per week and high-density lipoprotein cholesterol levels in healthy, middle-aged men. A dose-response relationship. Arch Intern Med. 1995;155:415–20.

    Article  CAS  PubMed  Google Scholar 

  301. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347:1483–92.

    Article  CAS  PubMed  Google Scholar 

  302. Mestek ML, Plaisance EP, Ratcliff LA, Taylor JK, Wee SO, Grandjean PW. Aerobic exercise and postprandial lipemia in men with the metabolic syndrome. Med Sci Sports Exerc. 2008;40:2105–11.

    Article  CAS  PubMed  Google Scholar 

  303. Pafili ZK, Bogdanis GC, Tsetsonis NV, Maridaki M. Postprandial lipemia 16 and 40 hours after low-volume eccentric resistance exercise. Med Sci Sports Exerc. 2009;41:375–82.

    Article  PubMed  Google Scholar 

  304. Sabaka P, Kruzliak P, Balaz D, Komornikova A, Celovska D, Cammarota G, et al. Effect of short term aerobic exercise on fasting and postprandial lipoprotein subfractions in healthy sedentary men. Lipids Health Dis. 2015;14:151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Kokkinos PF, Narayan P, Colleran J, Fletcher RD, Lakshman R, Papademetriou V. Effects of moderate intensity exercise on serum lipids in African-American men with severe systemic hypertension. Am J Cardiol. 1998;81:732–5.

    Article  CAS  PubMed  Google Scholar 

  306. Durstine JL, Grandjean PW, Cox CA, Thompson PD. Lipids, lipoproteins, and exercise. J Cardiopulm Rehabil. 2002;22:385–98.

    Article  PubMed  Google Scholar 

  307. Quinlivan R, Buckley J, James M, Twist A, Ball S, Duno M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81:1182–8.

    Google Scholar 

  308. Mc AB. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci. 1951;10:13–35.

    Google Scholar 

  309. Nogales-Gadea G, Santalla A, Ballester-Lopez A, Arenas J, Martin MA, Godfrey R, et al. Exercise and preexercise nutrition as treatment for McArdle disease. Med Sci Sports Exerc. 2015;48:673–9.

    Google Scholar 

  310. Delaney NF, Sharma R, Tadvalkar L, Clish CB, Haller RG, Mootha VK. Metabolic profiles of exercise in patients with McArdle disease or mitochondrial myopathy. Proc Natl Acad Sci USA. 2017;114:8402–7.

    Google Scholar 

  311. Nogales-Gadea G, Godfrey R, Santalla A, Coll-Canti J, Pintos-Morell G, Pinos T, et al. Genes and exercise intolerance: Insights from McArdle disease. Physiol Genomics. 2016;48:93–100.

    Google Scholar 

  312. Kaczor JJ, Robertshaw HA, Tarnopolsky MA. Higher oxidative stress in skeletal muscle of McArdle disease patients. Mol Genet Metab Rep. 2017;12:69–75.

    Google Scholar 

  313. Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (glycogen storage disease type v). Cochrane Database Syst Rev. 2014;11:CD003458.

    Google Scholar 

  314. Santalla A, Nogales-Gadea G, Ortenblad N, Brull A, de Luna N, Pinos T, et al. McArdle disease: a unique study model in sports medicine. Sports Med. 2014;44:1531–44.

    Google Scholar 

  315. Nogales-Gadea G, Consuegra-Garcia I, Rubio JC, Arenas J, Cuadros M, Camara Y, et al. A transcriptomic approach to search for novel phenotypic regulators in McArdle disease. PLoS One. 2012;7:e31718.

    Google Scholar 

  316. Munguia-Izquierdo D, Santalla A, Lucia A. Cardiorespiratory fitness, physical activity, and quality of life in patients with McArdle disease. Med Sci Sports Exerc. 2015;47:799–808.

    Google Scholar 

  317. Ollivier K, Hogrel JY, Gomez-Merino D, Romero NB, Laforet P, Eymard B, et al. Exercise tolerance and daily life in McArdle’s disease. Muscle Nerve. 2005;31:637–41.

    Google Scholar 

  318. Andersen ST, Haller RG, Vissing J. Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch Neurol. 2008;65:786–9.

    Google Scholar 

  319. Mate-Munoz JL, Moran M, Perez M, Chamorro-Vina C, Gomez-Gallego F, Santiago C, et al. Favorable responses to acute and chronic exercisein McArdle patients. Clin J Sport Med. 2007;17:297–303.

    Google Scholar 

  320. Quinlivan R, Vissing J, Hilton-Jones D, Buckley J. Physical training for McArdle disease. Cochrane Database Syst Rev. 2011;12:CD007931.

    Google Scholar 

  321. Haller RG, Wyrick P, Taivassalo T, Vissing J. Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol. 2006;59:922–8.

    Google Scholar 

  322. Garcia-Benitez S, Fleck SJ, Naclerio F, Martin MA, Lucia A. Resistance (weight lifting) training in an adolescent with McArdle disease. J Child Neurol. 2013;28:805–8.

    Google Scholar 

  323. Santalla A, Munguia-Izquierdo D, Brea-Alejo L, Pagola-Aldazabal I, Diez-Bermejo J, Fleck SJ, et al. Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits. Front Aging Neurosci. 2014;6:334.

    Google Scholar 

  324. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine Position Stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–59.

    Google Scholar 

  325. Andersen ST, Vissing J. Carbohydrate- and protein-rich diets in McArdle disease: effects on exercise capacity. J Neurol Neurosurg Psychiatry. 2008;79:1359–63.

    Google Scholar 

  326. Reason SL, Westman EC, Godfrey R, Maguire E. Can a low-carbohydrate diet improve exercise tolerance in McArdle disease? J Rare Disord Diagn Ther. 2017;3:1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Koutsilieris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Philippou, A., Chryssanthopoulos, C., Maridaki, M., Dimitriadis, G., Koutsilieris, M. (2019). Exercise Metabolism in Health and Disease. In: Kokkinos, P., Narayan, P. (eds) Cardiorespiratory Fitness in Cardiometabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-04816-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04816-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04815-0

  • Online ISBN: 978-3-030-04816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics