Skip to main content

Movable Poles of Painlevé I Transcendents and Singularities of Monodromy Data Manifolds

  • Conference paper
  • First Online:
Recent Developments in Integrable Systems and Related Topics of Mathematical Physics (MP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 273))

Included in the following conference series:

  • 300 Accesses

Abstract

We consider a classification of solutions to the first Painlevé  equation with respect to distribution of their poles at infinity. A connection is found between singularities of two-dimensional monodromy data manifold and analytic properties of solutions parametrized by this manifold. It is proved that solutions of Painlevé  I equation have no poles at infinity at a given critical sector of the complex plane iff the related monodromy data belong to the singular submanifold. Such solutions coincide with the class of “truncated” solutions (intégrales tronquée) by classification of P. Boutroux. We derive further classification based on decomposition of singularities of monodromy data manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertola, M.: On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity 25, 1179–1185 (2012)

    Article  MathSciNet  Google Scholar 

  2. Boutroux, P.: Recherches sur les transcendentes de M. Painlevé et l’étude asymptotique des équations différentielles du seconde ordre. Ann. École Norm. 30, 265–375 (1913); Ann.École Norm. 31, 99–159 (1914)

    Google Scholar 

  3. Clarkson, P.A.: Painlevé equations—nonlinear special functions. In: Marcell‘ an, F., van Assche, W. (eds.) Orthogonal Polynomials and Special Functions: computation and Application. Lecture Notes in Mathematics, vol. 1883, pp. 331–411. Springer, Heidelberg (2006)

    Google Scholar 

  4. Costin, O., Huang, M., Tanveer, S.: Proof of the Dubrovin conjecture of the tritronquée solutions of \(P_I\). Duke Math. J. 163, 665–704 (2014)

    Article  MathSciNet  Google Scholar 

  5. Dubrovin, B., Grava, T., Klein, C.: On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation. J. Nonlin. Sci. 19, 57–94 (2009)

    Article  Google Scholar 

  6. Fokas, A.S., Its, A.R., Kapaev A.A., Novokshenov, V.Yu.: Painlevé Transcendents. In: The Riemann-Hilbert Approach. Mathematics Surveys and Monographs, vol. 128. Amer. Math. Soc., Providence, RI (2006)

    Google Scholar 

  7. Fornberg, B., Weideman, J.A.C.: A numerical methology for the Painlevé equations. J. Comp. Phys. 230, 5957–5973 (2011)

    Article  MathSciNet  Google Scholar 

  8. Gromak, V.I., Laine, I., Shimomura, S.: Painlevé equations in the complex plane. de Gruyter Studies in Mathematics, vol. 28. Walter de Gruyter, Berlin (2002)

    Google Scholar 

  9. Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980)

    Article  Google Scholar 

  10. Its, A.R., Novokshenov, V.Yu.: The Isomonodromy deformation method in the theory of Painlevé equations. Lecture Notes in Mathematics, vol. 1191. Springer, Heidelberg (1986)

    Book  Google Scholar 

  11. Kapaev, A.A.: Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A Math. Gen. 37, 11149–11167 (2004)

    Article  Google Scholar 

  12. Kapaev, A.A., Kitaev, A.V.: Connection formulae for the first Painlevé transcendent in the complex plane. Lett. Math. Phys. 27, 243–252 (1993)

    Article  MathSciNet  Google Scholar 

  13. Kavai, T., Takei, Y.: Algebraic Analysis of Singular Perturbation Theory. Amer. Math. Soc. Math. Monographs, vol. 227. Providence, RI (2005)

    Google Scholar 

  14. Kitaev, A.V.: The isomonodromy technique and the elliptic asymptotics of the first Painlevé transcendent. Algebra i Analiz. 5, 197–211 (1993)

    MATH  Google Scholar 

  15. Novokshenov, V.Yu.: Boutroux ansatz for the second Painlevé equation in the complex domain. Izv. Akad. Nauk SSSR, series matem, vol. 54, pp. 1229–1251 (1990)

    Google Scholar 

  16. Novokshenov, V.Y.: Padé approximations of Painlevé I and II transcendents. Theor. Math. Phys. 159, 852–861 (2009)

    Article  Google Scholar 

  17. Novokshenov, V.Y.: Special solutions of the first and second painleve equations and singularities of the monodromy data manifold. Proc. Steklov Inst. Math. 281(Suppl. 1), S1–S13 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159, 151–174 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper was partly supported by the Russian Science Foundation (RSCF grant 17-11-01004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Novokshenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Novokshenov, V.Y. (2018). Movable Poles of Painlevé I Transcendents and Singularities of Monodromy Data Manifolds. In: Buchstaber, V., Konstantinou-Rizos, S., Mikhailov, A. (eds) Recent Developments in Integrable Systems and Related Topics of Mathematical Physics. MP 2016. Springer Proceedings in Mathematics & Statistics, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-030-04807-5_3

Download citation

Publish with us

Policies and ethics