Skip to main content

Comparison Between DC and HiPIMS Discharges. Application to Nickel Thin Films

  • Conference paper
  • First Online:
Book cover Advances in Engineering Research and Application (ICERA 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 63))

Included in the following conference series:

Abstract

The study deals with a comparison between Direct Current (DC) and High Power Impulse Magetron Sputtering (HiPIMS) processes. We have first highlighted that the plasma of the DC discharge is composed mainly of gaseous species whereas the HiPIMS discharge leads to a plasma dominated by metal vapor and characterized by the presence of charged species of strong and low energy. For thin nickel (Ni) films, we have found the the use of HiPIMS produce denser and better crystallized layers improving the uniformity of the coating on substrates with complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gudmundsson, J.T., Brenning, N., Lundin, D., Helmersson, U.: High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol. Vac. Surf. Films. 30, 030801 (2012)

    Article  Google Scholar 

  2. Lifshitz, Y., Kasi, S.R., Rabalais, J.W.: Subplantation model for film growth from hyperthermal species: application to diamond. Phys. Rev. Lett. 62, 1290–1293 (1989)

    Article  Google Scholar 

  3. Pauleau, Y.: Generation and evolution of residual stresses in physical vapour-deposited thin films. Vacuum 61, 175–181 (2001)

    Article  Google Scholar 

  4. Ehiasarian, A.P., Wen, J.G., Petrov, I.: Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. J. Appl. Phys. 101, 054301 (2007)

    Article  Google Scholar 

  5. Vetushka, A., Ehiasarian, A.P.: Plasma dynamic in chromium and titanium HIPIMS discharges. J. Phys. Appl. Phys. 41, 015204 (2008)

    Article  Google Scholar 

  6. Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A.P., Gudmundsson, J.T.: Ionized physical vapor deposition (IPVD): a review of technology and applications. Thin Solid Films 513, 1–24 (2006)

    Article  Google Scholar 

  7. Sarakinos, K., Alami, J., Konstantinidis, S.: High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf. Coat. Technol. 204, 1661–1684 (2010)

    Article  Google Scholar 

  8. Britun, N., Minea, T., Konstantinidis, S., Snyders, R.: Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges: a review. J. Phys. Appl. Phys. 47, 224001 (2014)

    Article  Google Scholar 

  9. Mišina, M., Shaginyan, L.R., Maček, M., Panjan, P.: Energy resolved ion mass spectroscopy of the plasma during reactive magnetron sputtering. Surf. Coat. Technol. 142–144, 348–354 (2001)

    Article  Google Scholar 

  10. Kadlec, S., Quaeyhaegens, C., Knuyt, G., Stals, L.M.: Energy distribution of ions in an unbalanced magnetron plasma measured with energy-resolved mass spectrometry. Surf. Coat. Technol. 89, 177–184 (1997)

    Article  Google Scholar 

  11. Palmucci, M., Britun, N., Silva, T., Snyders, R., Konstantinidis, S.: Mass spectrometry diagnostics of short-pulsed HiPIMS discharges. J. Phys. Appl. Phys. 46, 215201 (2013)

    Article  Google Scholar 

  12. Hecimovic, A., Ehiasarian, A.P.: Spatial and temporal evolution of ion energies in high power impulse magnetron sputtering plasma discharge. J. Appl. Phys. 108, 063301 (2010)

    Article  Google Scholar 

  13. Maszl, C., Breilmann, W., Benedikt, J., von Keudell, A.: Origin of the energetic ions at the substrate generated during high power pulsed magnetron sputtering of titanium. J. Phys. Appl. Phys. 47, 224002 (2014)

    Article  Google Scholar 

  14. Lundin, D., Helmersson, U., Kirkpatrick, S., Rohde, S., Brenning, N.: Anomalous electron transport in high power impulse magnetron sputtering. Plasma Sources Sci. Technol. 17, 025007 (2008)

    Article  Google Scholar 

  15. Lundin, D., Larsson, P., Wallin, E., Lattemann, M., Brenning, N., Helmersson, U.: Cross-field ion transport during high power impulse magnetron sputtering. Plasma Sources Sci. Technol. 17, 035021 (2008)

    Article  Google Scholar 

  16. Anders, A., Panjan, M., Franz, R., Andersson, J., Ni, P.: Drifting potential humps in ionization zones: The “propeller blades” of high-power impulse magnetron sputtering. Appl. Phys. Lett. 103, 144103 (2013)

    Article  Google Scholar 

  17. Alami, J., Sarakinos, K., Mark, G., Wuttig, M.: On the deposition rate in a high power pulsed magnetron sputtering discharge. Appl. Phys. Lett. 89, 154104 (2006)

    Article  Google Scholar 

  18. Konstantinidis, S., Dauchot, J.P., Ganciu, M., Ricard, A., Hecq, M.: Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges. J. Appl. Phys. 99, 013307 (2006)

    Article  Google Scholar 

  19. Eriksson, F., Ghafoor, N., Schäfers, F., Gullikson, E.M., Birch, J.: Interface engineering of short-period Ni/V multilayer X-ray mirrors. Thin Solid Films 500, 84–95 (2006)

    Article  Google Scholar 

  20. Zhou, X.W., Wadley, H.N.G.: Atomistic simulations of low energy ion assisted vapor deposition of metal multilayers. J. Appl. Phys. 87, 2273–2281 (2000). https://doi.org/10.1063/1.372172

    Article  Google Scholar 

  21. Samuelsson, M., Lundin, D., Jensen, J., Raadu, M.A., Gudmundsson, J.T., Helmersson, U.: On the film density using high power impulse magnetron sputtering. Surf. Coat. Technol. 205, 591–596 (2010)

    Article  Google Scholar 

  22. Wang, S.-F., Lin, H.-C., Bor, H.-Y., Tsai, Y.-L., Wei, C.-N.: Characterization of chromium thin films by sputter deposition. J. Alloys Compd. 509, 10110–10114 (2011)

    Article  Google Scholar 

  23. Ferrec, A., Keraudy, J., Jouan, P.-Y.: Mass spectrometry analyzes to highlight differences between short and long HiPIMS discharges. Appl. Surf. Sci. 390, 497–505 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P-Y. Jouan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keraudy, J., Nguyen, D.T., Ferrec, A., Jouan, PY. (2019). Comparison Between DC and HiPIMS Discharges. Application to Nickel Thin Films. In: Fujita, H., Nguyen, D., Vu, N., Banh, T., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2018. Lecture Notes in Networks and Systems, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-04792-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04792-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04791-7

  • Online ISBN: 978-3-030-04792-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics