Skip to main content

Comparative Analysis and Simulation of Highest Efficiency Multi-junction Solar Cells for Space Applications

  • Conference paper
  • First Online:
Renewable Energy for Smart and Sustainable Cities (ICAIRES 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 62))

Abstract

Nowadays, solar energy is promising the primary source of energy for space missions that have a great potential to generate power for an extremely low operating cost when compared to already existing power generation technologies. The development of space systems is affected to many fields: the study of space itself, the science of materials and especially the field of energy. Indeed, solar arrays are the only non-nuclear means that enable satellites in orbit to be fed continuously. Increasing the efficiency of solar cells is a major goal and the prominent factor in space photovoltaic system research. The most efficient technology for generation of electricity from solar irradiation is multi-junction solar cell. The materials used in these structures are a prime factor, controlling device efficiency. Current triple junction solar cells reach 30% and the next generation will bring 35% in 5 years to peak at 40%. The aim of this work is to simulate, investigate and correlate their performance in terms of efficiency, fill factor, and other electrical parameters. Then, we had made an efficiency comparison between a various solar cells to determine the best choice which will bring a good performance to be used in the design of solar array of space photovoltaic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel, J., Sharma, G.: Modeling and simulation of solar photovoltaic module using matlab/simulink. Int. J. Res. Eng. Technol. 2, 225–228 (2013)

    Google Scholar 

  2. Rashel, M.R., Albino, A., Tlemcani, M., Gonçalves, T.C.F., Rifath, J.: MATLAB Simulink modeling of photovoltaic cells for understanding shadow effect. In: IEEE International Conference on Renewable Energy Research and Applications (ICRERA 2016), Birmingham UK, 20–23 Nov. 2016

    Google Scholar 

  3. Nishioka, K., Takamoto, T., Agui, T., Kaneiwa, M., Uraoka, Y., Fuyuki, T.: Evaluation of InGaP/InGaAs/Ge triple junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems. Sol. Energy Mater. Sol. Cells 90, 1308–1321 (2006)

    Article  Google Scholar 

  4. Gautam, S., Raut, D.B., Neupane, P., Ghale, D.P., Dhakal, R Maximum power point tracker with solar prioritizer in photovoltaic application. In: IEEE International Conference on Renewable Energy Research and Applications (ICRERA 2016), Birmingham UK, 20–23 Nov 2016

    Google Scholar 

  5. Nishioka, K., Sueto, T., Uchina, M., Ota, Y.: Detailed analysis of temperature characteristics of an InGaP/InGaAs/Ge triple-junction solar cell. J. Electron. Mater. 39, 704–708 (2010)

    Article  Google Scholar 

  6. Otakwa, R.M., Simiyu, J., Waita, S.M., Mwabora, J.M.: Application of dye-sensitized solar cell technology in the tropics: effects of air mass on device performance. Int. J. Renew. Energy Res. 2(3), 369–375 (2012)

    Google Scholar 

  7. Fatemi, N. Pollard, H, Hou, H., Sharps, P.: Solar array trades between very high-efficiency multi-junction and Si space solar cells. In: Conference Record of the 28th IEEE Photovoltaic Specialists Conference (PVSC 2000), pp. 1083–1086. IEEE, New York, NY (2000)

    Google Scholar 

  8. Liu, J., Hou, R.: Solar cell simulation model for photovoltaic power generation system. Int. J. Renew. Energy Res. 4(1), 49–53 (2014)

    Google Scholar 

  9. Stan, M.A., Aiken, D.J., Sharps, P.R., Fatemi, N.S., Spadafora, F.A., Hills, J., Yoo, H., Clevenger, B. 27.5% efficiency InGaP/InGaAs/Ge advanced triple junction (ATJ) space solar cells for high volume manufacturing. In: Photovoltaic Specialists Conference. Conference Record of the Twenty-Ninth IEEE, New Orleans, LA, USA, 22 April 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hadj Dida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hadj Dida, A., Bourahla, M., Bekhti, M. (2019). Comparative Analysis and Simulation of Highest Efficiency Multi-junction Solar Cells for Space Applications. In: Hatti, M. (eds) Renewable Energy for Smart and Sustainable Cities. ICAIRES 2018. Lecture Notes in Networks and Systems, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-04789-4_57

Download citation

Publish with us

Policies and ethics