Advertisement

Impact of Load Characteristics on PV Solar System with MPPT Control

  • Saidi AhmedEmail author
  • Benoudjafer Cherif
  • Chellali Benachaiba
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)

Abstract

In the last decade, the use of renewable energy resources instead of fossil fuels pollutants has increased exponentially. Photovoltaic energy generation is ever more important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared to other renewable resources as more accessibility of solar irradiation.

This paper presents impact load characteristics on MPPT controller of R, RC, RL and RLC circuit load with Perturb and Observe Maximum Power Point Tracking (MPPT) algorithm for a stand-alone photovoltaic system and sees the comparison of each circuit load on the system and the algorithm of control. The different results of power, voltage and current are discussed and shown that the inductor it has a capital effect on Maximum power point (MPP) and system in general. The simulation results and a comparative analysis are discussed in this paper.

Keywords

tPV array MPPT P&O algorithm Load characteristics DC-DC converter 

Notes

Acknowledgment

The authors thank ENERGARID, SimulIA,SGRE Laboratorys and Tahri Mohammed University for all helps and supports.

References

  1. 1.
    Alsumiri, M.A., Jiang, L., Tang, W.H.: Maximum power point tracking controller for photovoltaic system using sliding mode control. In: Renewable Power Generation Conference (RPG 2014), 3rd, 24–25 Sept 2014Google Scholar
  2. 2.
    Mahdi, A., Tang, W., Wu, Q.: Improvement of a MPPT algorithm for pv systems and its experimental validation. In: International Conference on Renewable Energies and Power Quality, Granada, Spain (2010)Google Scholar
  3. 3.
    Aranda, E., Galán, J.A., Cardona, M., Rquez, J.: Measuring the I-V curve of PV generators. IEEE Ind. Electron. Mag. 3(3), 4–14 (2009)CrossRefGoogle Scholar
  4. 4.
    Scarpa, V.V.R., Buso, S., Spiazzi, G.: Low-complexity MPPT technique exploiting the PV module MPP locus characterization. IEEE Trans. Ind. Electron. 56(5), 1531–1538 (2009)CrossRefGoogle Scholar
  5. 5.
    Martin, A.D., IEEE Student Member, Jesus R. Vazquez, IEEE Member: MPPT Algorithms Comparison in PV Systems P&O, PI, Neuro-fuzzy and Back Stepping Controls. IEEE. ISBN: 978-1-4799-7800-7/15/$31.00 ©2015 (2015)Google Scholar
  6. 6.
    Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking technique. IEEE Trans. Energy Convers. 22, 439 (2007)CrossRefGoogle Scholar
  7. 7.
    Freeman, D.: Introduction to photovoltaic systems maximum power point tracking. Texas instruments Rapport D’application SLVA446-November (2010)Google Scholar
  8. 8.
    Jain, S., Agarwal, V.: Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. IET Electric Power Appl. 1, 753–762 (2007)CrossRefGoogle Scholar
  9. 9.
    Chao, P.C.-P., Chen, W.-D., Chang, C.-K.: Maximum power tracking of a generic photovoltaic system via a fuzzy controller and a two-stage DC–DC converter. Microsyst. Technol. 18, 1267 (2012)CrossRefGoogle Scholar
  10. 10.
    Villalva, M.G., Gazoli, J.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24, 1198–1208 (2009)CrossRefGoogle Scholar
  11. 11.
    Bennett, T., Zilouchian, A., Messenger, R.: Photovoltaic model and converter topology considerations for MPPT purposes. Sol. Energy 86, 2029–2040 (2012)CrossRefGoogle Scholar
  12. 12.
    Salam, Z., Ahmed, J., Merugu, B.S.: The application of soft computing methods for MPPT of PV system: a technological and status review. Appl. Energy 107, 135–148 (2013)CrossRefGoogle Scholar
  13. 13.
    Di Piazza, M.C., Vitale, G.: Photovoltaic field emulation including dynamic and partial shadow conditions. Appl. Energy 87, 814–823 (2012)CrossRefGoogle Scholar
  14. 14.
    Oi, A.: Design and simulation of photovoltaic water pumping system. Thesis (2005)Google Scholar
  15. 15.
    Elgendy, M.A., Zahawi, B., Atkinson, D.J.: Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy 3, 21–33 (2012)CrossRefGoogle Scholar
  16. 16.
    Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20, 963–973 (2005)CrossRefGoogle Scholar
  17. 17.
    Dorofte, C., Borup, U. and Blaabjerg, F. (2005) A Combined two-method MPPT control scheme for grid-connected photovoltaic systems. In: 2005 European Conference on Power Electronics and Applications, Dresden, 11–14 Sept 2005, p. 10Google Scholar
  18. 18.
    Liu, C., Wu, B., Cheung, R.: Advanced algorithm for MPPT control of photovoltaic systems. In: Canadian Solar Buildings Conference, Montreal, 20–24 Aug 2004 (2004)Google Scholar
  19. 19.
    Rosu-Hamzescu, M., Oprea, S.: Practical guide to implementing solar panel MPPT algorithms. Microchip Technology Inc. AN1521 (2013)Google Scholar
  20. 20.
    Ibrahim, O., Yahaya, N.Z., Saad, N., Umar, M.W.: Matlab/Simulink model of solar PV array with perturb and observe MPPT for maximising PV array efficiency. In: 2015 IEEE Conference on Energy Conversion (CENCON) 19–20 Oct 2015Google Scholar
  21. 21.
    Saidi, A.: Comparative study of different load under P&O MPPT algorithm for PV systems. EEA Electroteh. Electron. Autom. 64(4), 24–27 (2016)Google Scholar
  22. 22.
    Saidi, A., Benachaiba, C.: Comparison of IC and P&O algorithms in MPPT for grid connected PV module. In: Proceedings of 2016 8th International Conference on Modelling, Identification and Control, ICMIC 2016 (2017)Google Scholar
  23. 23.
    Benoudjafer, C., Benachaiba, C., Saidi, A.: Hybrid shunt active filter: impact of the network’s impedance on the filtering characteristic. WSEAS Trans. Power Syst. 9, 171–177 (2014)Google Scholar
  24. 24.
    Saidi, A., Cherif, B., Chellali, B.: Fuzzy intelligent control for solar/wind hybrid renewable power system. EEA Electroteh. Electron. Autom. 65(4), 128–136 (2017)Google Scholar
  25. 25.
    Ahmed, S., Benoudjafer, C., Benachaiba, C.: MPPT technique for standalone hybrid PV-wind using fuzzy controller. In: Hatti, M. (ed.) ICAIRES 2017. LNNS, vol. 35, pp. 185–196. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73192-6_19CrossRefGoogle Scholar
  26. 26.
    Saidi, A., Chellali, B.: Simulation and control of Solar Wind hybrid renewable power system. In: 2017 6th International Conference on Systems and Control, ICSC 2017 (2017)Google Scholar
  27. 27.
    Harrou, F., Sun, Y., Saidi, A.: Online model-based fault detection for grid connected PV systems monitoring. In: 2017 5th International Conference on Electrical Engineering—Boumerdes, ICEE-B 2017 (2017)Google Scholar
  28. 28.
    Ahmed, Saidi, Benoudjafer, Cherif, Benachaiba, Chellali: Modeling and operation of PV/fuel cell standalone hybrid system with battery resource. In: Hatti, Mustapha (ed.) ICAIRES 2017. LNNS, vol. 35, pp. 299–307. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73192-6_31CrossRefGoogle Scholar
  29. 29.
    Harrou, F., Sun, Y., Taghezouit, B., Saidi, A., Hamlati, M.-E.: Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches. Renew. Energy 116, 22–37 (2018)CrossRefGoogle Scholar
  30. 30.
    Saidi, A.: Solar-wind hybrid renewable energy systems: evolutionary technique. Electrotehn. Electronica Autom. 64(4), 24–27 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saidi Ahmed
    • 1
    Email author
  • Benoudjafer Cherif
    • 1
  • Chellali Benachaiba
    • 1
  1. 1.Electrical Engineering DepartmentTahri Mohamed UniversityBécharAlgeria

Personalised recommendations