Skip to main content

Comparative Study of Maximum Power Point Tracking Algorithms for Thermoelectric Generator

  • Conference paper
  • First Online:
Book cover Renewable Energy for Smart and Sustainable Cities (ICAIRES 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 62))

Abstract

Variations in load and temperature can cause a thermoelectric generator (TEG) to operate at a voltage that does not produce the maximum possible power for a given temperature difference. Therefore a maximum power point tracker (MPPT) is used to force the generator to a voltage that produces maximum power. This paper presents a comparative simulation study of two important MPPT algorithms specifically perturb and observe and incremental conductance. The Matlab Simulink environment is used to analyze and interpret the simulation results of these algorithms, and therefore show the performance and limitations of each algorithm. As a result, the Incremental conductance method has shown promise as a suitable MPPT algorithm for a TEG subjected to steady state conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willis, H.L., Scott, W.G.: Distributed Power Generation—Planning and Evaluation, 1st edn. Marcel Dekker, New York (2000). ISBN 0-8247-0336-7

    Book  Google Scholar 

  2. Rahman, S.: Going green: the growth of renewable energy. IEEE Power Energy Mag. 1(6), 16–18 (2003)

    Article  Google Scholar 

  3. Rowe, D.: Thermoelectric waste heat recovery as a renewable energy source. Int. J. Innov. Energy Syst. Power 1, 13–23 (2006)

    Google Scholar 

  4. Dalala, Z.M., Zahid, Z.U.: New MPPT algorithm based on indirect open circuit voltage and short circuit current detection for thermoelectric generators. In: Energy Conversion Congress and Exposition (ECCE), 2015 IEEE, pp. 1062–1067 (2015)

    Google Scholar 

  5. Riffat, S.B., Ma, X.: Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23, 913–935 (2003)

    Article  Google Scholar 

  6. Rowe, D.: Thermoelectrics, an environmentally-friendly source of electrical power. Renew. Energy 16, 1251–1256 (1999)

    Article  Google Scholar 

  7. Phillip, N., Maganga, O., Burnham, K.J., Dunn, J., Rouaud, C., Ellis, M.A., Robinson, S.: Modelling and simulation of a thermoelectric generator for waste heat energy recovery in Low Carbon Vehicles. In: 2012 2nd International Symposium on Environment. Friendly Energies and Applications (EFEA), pp. 94–99 (2012)

    Google Scholar 

  8. Hendricks, T., Choate, W.T.: Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery. Pacifc Northwest National Laboratory, Richland (2006)

    Book  Google Scholar 

  9. Fernandes, A.E.S.S.: Conversão de energia com células de Peltier. Dissertação (Mestrado). Universidade Nova de Lisboa, Lisboa (2012)

    Google Scholar 

  10. Kasa, N., Iida, T., Liang, C.: Flyback inverter controlled by sensorless current MPPT for photovoltaic power system. IEEE Trans. Ind. Electron. 52, 1145–1152 (2005)

    Article  Google Scholar 

  11. Rae-young, K., Jih-Sheng, L.: A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications. IEEE Trans. Power Electron. 23, 2310–2318 (2008)

    Article  Google Scholar 

  12. Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking methods. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

  13. Dolara, A., Faranda, R., Leva, S.: Energy comparison of seven MPPT techniques for PV systems. J. Electromagn. Anal. Appl. 3, 152–162 (2009)

    Google Scholar 

  14. Pikutis, M., Vasarevicius, D., Martavicius, R.: Maximum power point tracking in solar power plants under partially shaded condition. Elektronika ir Elektrotechnika 20(4), 49–52 (2014)

    Article  Google Scholar 

  15. Lineykin, S., Ben-yaakov, S.: Modeling and analysis of thermoelectric modules. IEEE Trans. Ind. Appl. 43(2), 505–512 (2007)

    Article  Google Scholar 

  16. Josephine, R.L., Padmabeaula, A., Raj, A.D.: Simulation of incremental conductance mppt with direct control and fuzzy logic methods using SEPIC converter. J. Electr. Eng. 13(3), 91–99 (2013)

    Google Scholar 

  17. Femia, F., Petrone, G., Spagnuolo, G., Vitelli, M.: Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems, pp. 35–84. CRC Press, Boca Raton (2013)

    Google Scholar 

  18. Piegari, L., Rizzo, R.: Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking. IET Renew. Power Gener. 4, 317–328 (2010)

    Article  Google Scholar 

  19. Liu, F., Kang, Y., Zhang, Y., Duan, S.: Comparison of P&O and hill climbing MPPT methods for grid-connected PV generator. In: 3rd IEEE Conference on Industrial Electronics and Applications” 3–5 June 2008; Singapore. IEEE, New York, pp 804–807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Belboula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belboula, A., Taleb, R., Bachir, G., Chabni, F. (2019). Comparative Study of Maximum Power Point Tracking Algorithms for Thermoelectric Generator. In: Hatti, M. (eds) Renewable Energy for Smart and Sustainable Cities. ICAIRES 2018. Lecture Notes in Networks and Systems, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-04789-4_36

Download citation

Publish with us

Policies and ethics