Advertisement

Extremum Seeking and P&O Control Strategies for Achieving the Maximum Power for a PV Array

  • B. K. OubbatiEmail author
  • M. Boutoubat
  • M. Belkheiri
  • A. Rabhi
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)

Abstract

The aim of this paper is to study and to compare between two control strategies for tracking the Maximum Power Point (MPP) for a photovoltaic (PV). The PV array is connected to the load through a boost converter. In fact, the Maximum Power Point Tracking (MPPT) is achieved by using two different methods for searching the Maximum Power point (MPP). These strategies methods are Perturb and observe (P&O) and Extremum Seeking Control (ESC). The aim goal of these strategies is to predict the maximum power point. Simulation results show the effectiveness of the control strategies applied to the studied system.

Keywords

Extremum Seeking Control (ESC) Perturb and observe technique MPPT PV array 

References

  1. 1.
    Abdelsalam, A.K., Massoud, A.M., Ahmed, S., Enjeti, P.N.: High-performance adaptive perturb and observe MPPT technique for photovoltaic- based microgrids. IEEE Trans. Power Electron. 26, 1010–1021 (2011)CrossRefGoogle Scholar
  2. 2.
    Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22, 439–449 (2007)CrossRefGoogle Scholar
  3. 3.
    Alajmi, B.N., Ahmed, K.H., Finney, S.J., Williams, B.W.: Fuzzylogic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans. Power Electron. 26, 1022–1030 (2011)CrossRefGoogle Scholar
  4. 4.
    Jiang, L.L., Nayanasiri, D.R., Maskell, D.L., Vilathgamuwa, D.M.: A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics. Renew. Energy 76, 53–65 (2015)CrossRefGoogle Scholar
  5. 5.
    Ishaque, K., Salam, Z., Lauss, G.: The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl. Energy 119, 119–128 (2014)CrossRefGoogle Scholar
  6. 6.
    Tan, Y., Moase, W., Manzie, C., Nesic, D., Mareels, I.M.Y.: Extremum seeking from 1922 to 2010. In: 29th Chinese Control Conference, CCC10, pp. 14–26 (2010)Google Scholar
  7. 7.
    Ariyur, K.B., Krsti´c, M.: Real-Time Optimization by Extremum-Seeking Control. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  8. 8.
    Krstic, M., Wang, H.: Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36, 595–601 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dandois, J., Pamart, P.-Y.: NARX modeling and extremum-seeking control of a separation. J. Aerosp. Lab. 6, 1–13 (2013) Google Scholar
  10. 10.
    Krstic, M.: Performance improvement and limitations in extremum seeking control. Syst. Control Lett. 39, 313–326 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yin, C., Chen, Y., MingZhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50, 3173–3181 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Moballegh, S., Jiang, J.: Modeling, prediction, experimental validations of power peaks of PV arrays under partial shading conditions. IEEE Trans. Sustain. Energy 5, 293–304 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. K. Oubbati
    • 1
    Email author
  • M. Boutoubat
    • 2
  • M. Belkheiri
    • 1
  • A. Rabhi
    • 3
  1. 1.LTSS LaboratoryLaghouat UniversityLaghouatAlgeria
  2. 2.LACoSERE Laboratory LaghouatUniversityLaghouatAlgeria
  3. 3.MIS LaboratoryPicardie UniversityAmiensFrance

Personalised recommendations