A Hybrid of Sliding Mode Control and Fuzzy Logic Control for a Five-Phase Synchronous Motor Speed Control

  • Fayçal MehediEmail author
  • Lazhari Nezli
  • Mohand Oulhadj Mahmoudi
  • Abdelkadir Belhadj Djilali
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)


This paper introduces a new technique for controlling the speed of multi-phase permanent magnet synchronous motor (PMSM). This technique depends on two well known control methods; the first one using a nonlinear control based on sliding mode control (SMC), which has a main advantage known as a sliding mode property. In the second, the fuzzy logic control is used to overcome the occurring chattering phenomena. A combination between the two mentioned above methods is suggested in this paper. Simulations results of the proposed control theme present good dynamic and steady-state performances as compared to the classical SMC from aspects of the reduction of the torque chattering, the quickly dynamic torque response and robustness to disturbance.


Five-phase PMSM Sliding Mode Control (SMC) Chattering phenomena Fuzzy Sliding Mode Control (FSMC) Robustness 


  1. 1.
    Guo, H., Xu, J., Chen, Y.H.: Robust control of fault tolerant permanent magnet synchronous motor for aerospace application with guaranteed fault switch process. IEEE Trans. Ind. Electron. 62(12), 7309–7321 (2015)CrossRefGoogle Scholar
  2. 2.
    Dai, P., Sun, W., Xu, N., Lv, Y., Zhu, X.: Research on energy management system of hybrid electric vehicle based on permanent magnet synchronous motor. In: Proceedings 11th IEEE Conference on Industrial Electronics and Applications, Hefei, China, pp. 2345–2349 (2016)Google Scholar
  3. 3.
    Chinchilla, M., Arnaltes, S., Burgos, J.C.: Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Trans. Energy Convers. 21(1), 130–135 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhao, Y.: Position/speed sensorless control for permanent-magnet synchronous machines. Electrical Engineering Theses and Dissertations. University of Nebraska-Lincoln, Spring 4 (2014)Google Scholar
  5. 5.
    Ramana, N.V., Sastry, V.L.N.: A novel speed control strategy for five phases permanent magnet synchronous motor with linear quadratic regulator. Int. J. Comput. Electr. Eng. 7(6), 408–416 (2015)CrossRefGoogle Scholar
  6. 6.
    Hosseyni, A., Trabelsi, R., Iqbal, A., Mimouni, M.F.: Backstepping control for a five-phase permanent magnet synchronous motor drive. Int. J. Power Electron. Drive Syst. 6(4), 842–852 (2015)Google Scholar
  7. 7.
    Salehifar, M., Arashloo, R.S., Eguilaz, M.M., Sala, V., Romeral, L.: Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles. IEEE IET Power Electron. 8(1), 76–87 (2015)CrossRefGoogle Scholar
  8. 8.
    Kim, H., Shin, K., Englebretson, S., Frank, N., Arshad, W.: Application areas of multiphase machines. IEEE Conference on Electric Machines & Drives, Chicago, IL, USA, pp. 172–179 (2013)Google Scholar
  9. 9.
    Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Junhui, Z., Mingyu, W., Yang, L., Yanjing, Z., Shuxi, L.: The study on the constant switching frequency direct torque controlled induction motor drive with a fuzzy sliding mode speed controller. IEEE the Natural Science Foundation of Chongqing (CSTC 2007BB3169), pp. 1543–1548 (2007)Google Scholar
  11. 11.
    Utkin, V.: Discussion aspects of high order sliding mode control. IEEE Trans. Autom. Control 61(3), 829–833 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fezzani, A., Drid, S., Makouf, A., Chrifi, L., Ouriagli, M.: Speed sensoless robust control of permanent magnet synchronous motor based on second-order sliding-mode observer. Serb. J. Electr. Eng. 11(3), 419–433 (2014)CrossRefGoogle Scholar
  13. 13.
    Benyattou, L., Zeghlache, S.: Adaptive fuzzy sliding mode controller using nonlinear sliding surfaces applied to the twin rotor multi-input- multi-output system. Mediterr J Meas Control 13(1), 702–719 (2017)Google Scholar
  14. 14.
    Mekri, F., Charpentier, J.F., Benelghali, S., Kestelyn, X.,: High order sliding mode optimal current control of five phase permanent magnet motor under open circuited Phase fault conditions. In: Proceedings IEEE Conference on Vehicle Power and Propulsion, Lille, France pp. 1–6 (2010)Google Scholar
  15. 15.
    Levant, A.: Integral high-order sliding modes. IEEE Trans. Autom. Control 52(7), 1278–1282 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Shah, M., Muhammad, I.: Comparative study of hierarchical sliding mode control and decoupled sliding mode control. In: 12th IEEE Conference on Industrial Electronics and Applications, Siem Reap, Cambodia, pp. 818–824 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fayçal Mehedi
    • 1
    • 2
    Email author
  • Lazhari Nezli
    • 2
  • Mohand Oulhadj Mahmoudi
    • 2
  • Abdelkadir Belhadj Djilali
    • 1
  1. 1.University of Hassiba BenboualiChlefAlgeria
  2. 2.Process Control LaboratoryNational Polytechnic SchoolAlgiersAlgeria

Personalised recommendations