Prediction PV Power Based on Artificial Neural Networks

  • Lalia MiloudiEmail author
  • Dalila Acheli
  • Saad Mekhilef
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)


The goal of this contribution is to estimate the power delivered by a multicrystals solar photovoltaic module based on artificial neural networks. Two structures of ANNs were tested: multiple-layer perceptron and radial basic function. The results obtained gave good coefficients of correlation, the statistical R2-value obtained is about 0.96 to predict this important parameter.


Artificial neural network (ANNs) Multiple-layer perceptron (MLP) Radial basic function (RBF) Photovoltaic (PV) power 



The first author would like to thank the System National of Documentation on Line (SNDL) for facilitate download articles as well as Pr S. Mekhilef from PEARL laboratory of University of Malaya, and Dr H. Sarimveis from National Technical University of Athens Greece.


  1. 1.
    Almonacid, F., Pérez-Higueras, P.J., Fernández, E.F., Hontoria, L.: A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Convers. Manag. 85, 389–398 (2014)CrossRefGoogle Scholar
  2. 2.
    Ashhab, M.S.: Adaptive prediction of the performance of a photovoltaic solar integrated system. Int. J. Therm. Environ. Eng. 3, 43–46 (2010)CrossRefGoogle Scholar
  3. 3.
    Karatepe, E., Boztepe, M., Colak, M.: Neural network based solar cell model. Energy Convers. Manag. 47, 1159–1178 (2006)CrossRefGoogle Scholar
  4. 4.
    Poullikkas, A.: A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 27, 778–788 (2013)CrossRefGoogle Scholar
  5. 5.
    Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1, 4–27 (1990)CrossRefGoogle Scholar
  6. 6.
    Miloudi, L., Acheli, D., Kesraoui, M.: Application of artificial neural networks for forecasting photovoltaic system parameters. Appl. Solar Energy 53, 85–91 (2017)CrossRefGoogle Scholar
  7. 7.
    Anders, U., Korn, O.: Model selection in neural networks. Neural Netw. 12, 306–323 (1999)CrossRefGoogle Scholar
  8. 8.
    Miloudi, L., Acheli, D., Kesraoui, M.: Sun trajectory and PV module I–V characteristics estimation using neural networks. In: 2017 8th International Renewable Energy Congress (IREC) IEEE Conference Publications, Amman, Jordann, pp. 1–6, 21–23 March 2017Google Scholar
  9. 9.
    Miloudi, L.: Méthodes heuristiques appliquées à l’optimisation du contrôle de l’orientation d’un panneau solaire photovoltaïque. Thesis, (2018)Google Scholar
  10. 10.
    Musavi, W.A.M.T., Chan, K.H., Faris, K.B., Hummels, D.M.: On the training of radial basis function classifiers. Neural Netw. 5, 587–598 (1992)CrossRefGoogle Scholar
  11. 11.
    Sarimveis, H., Tsekouras, G., Bafas, G.: A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space. Ind Eng Chem Res 41, 751–759 (2002)CrossRefGoogle Scholar
  12. 12.
    Miloudi, L., Acheli, D.: Prediction global solar radiation and modeling photovoltaic module based on artificial neural networks. In: Control, Engineering & Information Technology (CEIT), 2015 3rd International Conference on IEEE Conference Publications (2015)Google Scholar
  13. 13.
    Koussa, M., Malek, A., Haddadi, M.: Statistical comparison of monthly mean hourly and daily diffuse and global solar irradiation models and a Simulink program development for various Algerian climates. Energy Convers. Manag. 50, 1227–1235 (2009)CrossRefGoogle Scholar
  14. 14.
    Jiang, Y.: Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models. Energy 34, 1276–1283 (2009)CrossRefGoogle Scholar
  15. 15.
    Stone, R.J.: Improved statistical procedure for the evaluation of solar radiation estimation models. Solar Energy 51, 289–291 (1993)CrossRefGoogle Scholar
  16. 16.
    Miloudi, L., Acheli, D., Chaib, A.: Solar Tracking with Photovoltaic Panel. Energy Procedia 42, 103–112 (2013)CrossRefGoogle Scholar
  17. 17.
    Syed, I.M.: Comparative analysis of photovoltaic systems. Int. J., Electr. Comput. Energ. Electron. Commun. Eng. 09 (2015) Google Scholar
  18. 18.
    Equer, B.: Energie solaire photovoltaïque, vol. 1. Ellipses Editions Marketing and UNESCO 1993Google Scholar
  19. 19.
    Safari, A., Mekhilef, S.: Simulation and hardware implementation incremental conductance MPPT with direct control method using Cuk converter. IEEE Trans. Ind. Electron. 58, 1154–1161 (2011)CrossRefGoogle Scholar
  20. 20.
    Seyedmahmoudian, M., Mekhilef, S., Oo, A.M.T., Stojcevski, A., Soon, T.K., Ghandhari, A.S.: Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method. IEEE Trans. Sustain. Energy 6, 850–862 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of BoumerdèsBoumerdèsAlgeria
  2. 2.University of MalayaKuala LumpurMalaysia

Personalised recommendations