Artificial Neural Networks Technique to Detect and Locate an Interturn Short-Circuit Fault in Induction Motor

  • S. BensaouchaEmail author
  • A. Ameur
  • S. A. Bessedik
  • Y. Moati
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)


Induction machines (IMs) faults diagnosis is of significance to enhance the reliability and security of the industrial productions. In recent years, the faults detection and diagnosis of IMs have moved from traditional techniques that using the signals analysis to artificial intelligence (AIs) techniques such as the neural networks (NNs). Unfortunately, stator faults related failures account for a large percentage of faults in IMs. In this context, this paper proposes a diagnostic technique based on NNs for detecting and locating the interturns short-circuit in one of three stator winding phases of IM. Often, the most important step in which NNs is the process of selecting the best inputs that enables higher performance and better diagnosis, in this study, the three-phase shift between the stator voltages and its currents are considered as inputs of the NNs in order to develop an automatic fault detection and classification system. The simulation results in MATLAB environment prove the efficiency of the suggested NN technique to detect and locate short-circuit between turns of the same coil when the SCIM is operating under various load levels and various fault severities.


Induction machines Faults diagnosis Interturn short-circuit detection and location Artificial neural networks 


  1. 1.
    Tavner, P.: Review of condition monitoring of rotating electrical machines. IET Electr. Power Appl. 2, 215–247 (2008)CrossRefGoogle Scholar
  2. 2.
    Palácios, R.H.C., da Silva, I.N., Goedtel, A., Godoy, W.F., Lopes, T.D.: Diagnosis of stator faults severity in induction motors using two intelligent approaches. IEEE Trans. Ind. Inf. 13, 1681–1691 (2017)CrossRefGoogle Scholar
  3. 3.
    Dias, C.G., Pereira, F.H.: Broken rotor bars detection in induction motors running at very low slip using a hall effect sensor. IEEE Sens. J. 18, 4602–4613 (2018)CrossRefGoogle Scholar
  4. 4.
    Saleh, S., Ozkop, E.: Phaselet-based method for detecting electric faults in 3ϕ induction motor drives—part I: analysis and development. IEEE Trans. Ind. Appl. 53, 2976–2987 (2017)CrossRefGoogle Scholar
  5. 5.
    Bouzid, M.B.K., Champenois, G., Bellaaj, N.M., Signac, L., Jelassi, K.: An effective neural approach for the automatic location of stator interturn faults in induction motor. IEEE Trans. Ind. Electron. 55, 4277–4289 (2008)CrossRefGoogle Scholar
  6. 6.
    Siddique, A., Yadava, G., Singh, B.: Applications of artificial intelligence techniques for induction machine stator fault diagnostics. In: Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003. Symposium on 4th IEEE International, pp. 29–34 (2003)Google Scholar
  7. 7.
    Razik, H., Correa, M., Da Silva, E.: An application of genetic algorithm and fuzzy logic for the induction motor diagnosis. In: Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, pp. 3067–3072 (2008)Google Scholar
  8. 8.
    Devi, N.R., Sarma, D.S., Rao, P.R.: Diagnosis and classification of stator winding insulation faults on a three-phase induction motor using wavelet and MNN. IEEE Trans. Dielectr. Electr. Insul. 23, 2543–2555 (2016)CrossRefGoogle Scholar
  9. 9.
    Ballal, M.S., Khan, Z.J., Suryawanshi, H.M., Sonolikar, R.L.: Adaptive neural fuzzy inference system for the detection of inter-turn insulation and bearing wear faults in induction motor. IEEE Trans. Ind. Electron. 54, 250–258 (2007)CrossRefGoogle Scholar
  10. 10.
    Filippetti, F., Franceschini, G., Tassoni, C., Vas, P.: Recent developments of induction motor drives fault diagnosis using AI techniques. IEEE Trans. Ind. Electron. 47, 994–1004 (2000)CrossRefGoogle Scholar
  11. 11.
    Haroun, S., Seghir, A.N., Touati, S.: Multiple features extraction and selection for detection and classification of stator winding faults. IET Electr. Power Appl. 12, 339–346 (2017)CrossRefGoogle Scholar
  12. 12.
    Saddam, B., Aissa, A., Ahmed, B.S., Abdellatif, S.: Detection of rotor faults based on Hilbert Transform and neural network for an induction machine. In: 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), pp. 1–6 (2017)Google Scholar
  13. 13.
    Sun, C., Ma, M., Zhao, Z., Chen, X.: Sparse deep stacking network for fault diagnosis of motor. IEEE Trans. Ind. Inform. (2018)Google Scholar
  14. 14.
    Bachir, S., Tnani, S., Trigeassou, J.-C., Champenois, G.: Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines. IEEE Trans. Ind. Electron. 53, 963–973 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. Bensaoucha
    • 1
    Email author
  • A. Ameur
    • 2
  • S. A. Bessedik
    • 2
  • Y. Moati
    • 2
  1. 1.Laboratoire d’Etude et Développement des Matériaux Semi-Conducteurs et Diélectriques (LeDMaSD)Université Amar Telidji de LaghouatLaghouatAlgeria
  2. 2.Laboratoire d’Analyse, de Commande des Systèmes d’Energie et Réseaux électriques (LACoSERE)Université Amar Telidji de LaghouatLaghouatAlgeria

Personalised recommendations