Skip to main content

Multi-agent Systems with Virtual Stigmergy

  • Conference paper
  • First Online:
Software Technologies: Applications and Foundations (STAF 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11176))

  • 987 Accesses

Abstract

We introduce a simple language for multi-agent systems that lends itself to intuitive design of local specifications. Agents operate on (parts of) a decentralized data structure, the stigmergy, that contains their (partial) knowledge. Such knowledge is asynchronously propagated across local stigmergies. In this way, local changes may influence global behaviour. The main novelty is in that our interaction mechanism combines stigmergic interaction with attribute-based communication. Specific conditions for interaction can be expressed in the form of predicates over exposed features of the agents. Additionally, agents may access a global environment. After presenting the language, we show its expressiveness on some illustrative case studies. We also include some preliminary results towards automated verification by relying on a mechanizable symbolic encoding that allows to exploit verification tools for mainstream languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_1

    Chapter  Google Scholar 

  2. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0_13

    Chapter  Google Scholar 

  3. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space programs for robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)

    Article  Google Scholar 

  4. Bachrach, J., McLurkin, J., Grue, A.: Protoswarm: a language for programming multi-robot systems using the amorphous medium abstraction. In: 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), vol. 3, pp. 1175–1178. IFAAMAS (2008)

    Google Scholar 

  5. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172(442), 292–321 (2016)

    Article  Google Scholar 

  6. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

    Chapter  MATH  Google Scholar 

  8. Damiani, F., Viroli, M., Beal, J.: A type-sound calculus of computational fields. Sci. Comput. Program. 117, 17–44 (2016)

    Article  Google Scholar 

  9. De Nicola, R., Di Stefano, L., Inverso, O.: Toward formal models and languages for verifiable multi-robot systems. Front. Robot. AI 5, 1–15 (2018). https://doi.org/10.3389/frobt.2018.00094. Article no. 94

    Article  Google Scholar 

  10. De Nicola, R., et al.: The SCEL language: design, implementation, verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9_1

    Chapter  Google Scholar 

  11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)

    Article  Google Scholar 

  12. Liggett, T.M.: Interacting Particle Systems. CM. Springer, Heidelberg (2005). https://doi.org/10.1007/b138374

    Book  MATH  Google Scholar 

  13. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19(1), 9–30 (2017)

    Article  Google Scholar 

  14. Philippou, A., Toro, M., Antonaki, M.: Simulation and verification in a process calculus for spatially-explicit ecological models. Sci. Ann. Comput. Sci. 23(1), 119–167 (2013)

    MathSciNet  Google Scholar 

  15. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for heterogeneous swarm robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3794–3800. IEEE (2016)

    Google Scholar 

  16. Pitonakova, L., Crowder, R., Bullock, S.: Behaviour-data relations modelling language for multi-robot control algorithms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 727–732. IEEE (2017)

    Google Scholar 

  17. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), vol. 21, pp. 25–34. ACM (1987)

    Google Scholar 

  18. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: towards a framework based on agents and artifacts. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71103-2_7

    Chapter  Google Scholar 

  19. Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The \(k\)-unanimity rule for self-organized decision-making in swarms of robots. IEEE Trans. Cybern. 46(5), 1175–1188 (2016)

    Article  Google Scholar 

  20. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  21. Weyns, D., Holvoet, T.: A formal model for situated multi-agent systems. Fundamenta Informaticae 63(2–3), 125–158 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T.: Environments in multiagent systems. Knowl. Eng. Rev. 20(02), 127 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Di Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Nicola, R., Di Stefano, L., Inverso, O. (2018). Multi-agent Systems with Virtual Stigmergy. In: Mazzara, M., Ober, I., Salaün, G. (eds) Software Technologies: Applications and Foundations. STAF 2018. Lecture Notes in Computer Science(), vol 11176. Springer, Cham. https://doi.org/10.1007/978-3-030-04771-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04771-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04770-2

  • Online ISBN: 978-3-030-04771-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics