Skip to main content

Deformetrica 4: An Open-Source Software for Statistical Shape Analysis

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11167))

Included in the following conference series:

Abstract

Deformetrica is an open-source software for the statistical analysis of images and meshes. It relies on a specific instance of the large deformation diffeomorphic metric mapping (LDDMM) framework, based on control points: local momenta vectors offer a low-dimensional and interpretable parametrization of global diffeomorphims of the 2/3D ambient space, which in turn can warp any single or collection of shapes embedded in this physical space. Deformetrica has very few requirements about the data of interest: in the particular case of meshes, the absence of point correspondence can be handled thanks to the current or varifold representations. In addition to standard computational anatomy functionalities such as shape registration or atlas estimation, a bayesian version of atlas model as well as temporal methods (geodesic regression and parallel transport) are readily available. Installation instructions, tutorials and examples can be found at http://www.deformetrica.org.

A. Bône and M. Louis—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allassonnière, S., Kuhn, E., Trouvé, A.: Construction of bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16(3), 641–678 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9271–9280 (2018)

    Google Scholar 

  3. Bône, A., et al.: Prediction of the progression of subcortical brain structures in Alzheimer’s disease from baseline. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen-2017. LNCS, vol. 10551, pp. 101–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_10

    Chapter  Google Scholar 

  4. Charlier, B., Feydy, J., Glaunès, J.A., Trouvé, A.: An efficient kernel product for automatic differentiation libraries, with applications to measure transport (2017)

    Google Scholar 

  5. Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6(4), 2547–2580 (2013)

    Article  MathSciNet  Google Scholar 

  6. Delyon, B., Lavielle, M., Moulines, E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94–128 (1999)

    Article  MathSciNet  Google Scholar 

  7. Durrleman, S., et al.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)

    Article  Google Scholar 

  8. Fishbaugh, J., Prastawa, M., Gerig, G., Durrleman, S.: Geodesic regression of image and shape data for improved modeling of 4D trajectories. In: ISBI 2014–11th International Symposium on Biomedical Imaging, pp. 385–388, April 2014

    Google Scholar 

  9. Fletcher, T.: Geodesic regression on Riemannian manifolds. In: Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy-Geometrical and Statistical Methods for Modelling Biological Shape Variability, pp. 75–86 (2011)

    Google Scholar 

  10. Gori, P., et al.: A Bayesian framework for joint morphometry of surface and curve meshes in multi-object complexes. Med. Image Anal. 35, 458–474 (2017)

    Article  Google Scholar 

  11. Kühnel, L., Sommer, S.: Computational anatomy in Theano. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen-2017. LNCS, vol. 10551, pp. 164–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_15

    Chapter  Google Scholar 

  12. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  13. Louis, Maxime, Bône, Alexandre, Charlier, Benjamin, Durrleman, Stanley: Parallel transport in shape analysis: a scalable numerical scheme. In: Nielsen, Frank, Barbaresco, Frédéric (eds.) GSI 2017. LNCS, vol. 10589, pp. 29–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68445-1_4

    Chapter  Google Scholar 

  14. Louis, M., Charlier, B., Jusselin, P., Susovan, P., Durrleman, S.: A fanning scheme for the parallel transport along geodesics on Riemannian manifolds. SIAM J. Numer. Anal. 56, 2563–2584 (2018)

    Article  MathSciNet  Google Scholar 

  15. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  16. Paszke, A., et al.: Pytorch: tensors and dynamic neural networks in python with strong GPU acceleration, May 2017

    Google Scholar 

  17. Thompson, D.W., et al.: On growth and form (1942)

    Google Scholar 

  18. Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005). https://doi.org/10.1007/11505730_32

    Chapter  Google Scholar 

  19. Younes, L.: Shapes and Diffeomorphisms, vol. 171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12055-8

    Book  MATH  Google Scholar 

  20. Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and atlas building in diffeomorphic image registration. IPMI 23, 37–48 (2013)

    Google Scholar 

Download references

Acknowledgments

This work has been partly funded by the European Research Council (ERC) under grant agreement No 678304, European Union’s Horizon 2020 research and innovation program under grant agreement No. 666992, and the program Investissements d’avenir ANR-10-IAIHU-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Bône .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bône, A., Louis, M., Martin, B., Durrleman, S. (2018). Deformetrica 4: An Open-Source Software for Statistical Shape Analysis. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04747-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04746-7

  • Online ISBN: 978-3-030-04747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics