Lymphatic Tuberculosis

  • Yakup Hakan Basaran


Tuberculosis, being among the top ten deadliest disease in worldwide, is still a globally emerging disease according to WHO (World Health Organisation). Its existence is traceable until early ages and Hippocrates. Immunodeficiencies, mostly related to HIV, cause the patients to be more vulnerable for all clinical manifestations of the disease. The lymphatic tissue is the most common extrapulmonary tissue to be infected. Due to the nature of the bacteria like its slowly growth rate, surface molecules and enzymatic specialities and its relation with the host defence systems, lymphatic involvement is not a surprise. The interaction between the bacteria and host defence is still being researched. Moreover, although the incidence of the disease declined in time in developed countries with the improvement of awareness, emerging immunodeficiency syndromes and rising immigration rates cause the disease to keep its place among the top important infections.


Tuberculosis Lymphadenitis IGRas Tuberculous lymphadenitis Extrapulmonary tuberculosis Scrofula King’s evil Immunosuppression HIV 


  1. 1.
    Aaron L. Tuberculosis in HIV-infected patients: a comprehensive review. CMI. 2004;10(5):388–98.PubMedGoogle Scholar
  2. 2.
    Aljaferi AS. Diagnosis of tuberculous lymphadenitis by FNAC, microbiological methods and PCR: a comparative study. Cytopathology. 2004;15(1):44–8.CrossRefGoogle Scholar
  3. 3.
    Baik SJ. A case of obstructive jaundice caused by tuberculous lymphadenitis: A literature review. Clin Mol Hepatol. 2014;20(2):208–213.CrossRefGoogle Scholar
  4. 4.
    Bem C. Human Immunodeficiency virus positive tuberculosis lymphadenitis in central africa: clinical presentation of 157 cases. Int J Tuberc Lung Dis. 1995;20:876–82.Google Scholar
  5. 5.
    Brown TG. The influence of social factors on the incidence of extra-pulmonary tuberculosis infection. J Hyg (Lond). 1947;45(2):239–50.CrossRefGoogle Scholar
  6. 6.
    Tuberculosis- United States, 2016. MMWR 2017;66(11);289–294.Google Scholar
  7. 7.
    Chackerian A, Alt J, Perera T, Dascher C. SMB Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun. 2002;70:4501–9.CrossRefGoogle Scholar
  8. 8.
    Chandir S. Extrapulmonary tuberculosis: a retrospective review of 194 cases at a tertiary care hospital in Karachi, Pakistan. J Pak Med Assoc. 2010;60(2):105–9.PubMedGoogle Scholar
  9. 9.
    Chang K, et al. Rapid and effective diagnosis of tuberculosis and rifampin resistance with Xpert MTB/RIF assay: a meta-analysis. J Infect. 2012;64(6):580–8.CrossRefGoogle Scholar
  10. 10.
    Cho OH, Park KH, Kim T, et al. Paradoxical responses in non-HIV-infected patients with peripheral lymph node tuberculosis. J Infect. 2009;59:56–61.CrossRefGoogle Scholar
  11. 11.
    Demangel C, Bertolino P, Britton WJ. Autocrine IL-10 impairs dendritic cell(DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol. 2002;32:994–1002.CrossRefGoogle Scholar
  12. 12.
    European Centre for Disease Preventation and Cotrol Annual epidemiological report Reporting on 2011 surveillance data and 2012 epidemic intelligence data. 2013.Google Scholar
  13. 13.
    Geldmacher H. Assessment of lymph node tuberculosis in northern Germany: a clinical review. Chest. 2002;121(4):1177–82.CrossRefGoogle Scholar
  14. 14.
    Gomes T. Epidemiology of extrapulmonary tuberculosis in Brazil: a hierarchical model. BMC Infect Dis. 2014;14:9.CrossRefGoogle Scholar
  15. 15.
    Hatipoğlu N and Güvenç H. (2017). Chapter 4 Peripheral Tuberculous Lymphadenitis: Clinical Approach and Medico-Surgical Management.Google Scholar
  16. 16.
    Hawkey CR, Yap T, Pereira J, et al. Characterization and management of paradoxical upgrading reactions in HIV-uninfected patients with lymph node tuberculosis. Clin Infect Dis. 2005;40:1368–71.CrossRefGoogle Scholar
  17. 17.
    Ilgazlı A. Extrapulmonary tuberculosis: clinical and epidemiologic spectrum of 636 cases. Arch Med Res. 2004;35(5):435–41.CrossRefGoogle Scholar
  18. 18.
    Kanlıkama M. Management strategy of mycobacterial cervical lymphadenitis. J Laryngol Otol. 2000;114:274–8.CrossRefGoogle Scholar
  19. 19.
    Karadağ A. Comparison of culture, real-time DNA amplification assay and erlich-ziehl-neelsen for detection of mycobacterium tuberculosis. Balkan Med J. 2013;30(1):13–5.CrossRefGoogle Scholar
  20. 20.
    Khader S, Partida-Sanchez S, Bell G, Jelley-Gibbs D, Swain S, et al. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med. 2006;203:1805–15.CrossRefGoogle Scholar
  21. 21.
    Lakhey M. Diagnosis of tubercular lymphadenopathy by fine needle aspiration cytology, acid-fast staining and Mantoux test. JNMA J Nepal Med Assoc. 2009;48(175):230–3.PubMedGoogle Scholar
  22. 22.
    Lee KC. Contemporary management of cervical tuberculosis. Laryngoscope. 1992;102(1):60–4.CrossRefGoogle Scholar
  23. 23.
    Mert A. Tuberculous lymphadenopathy in adults: a review of 35 cases. Acta Chir Belg. 2002;102(2):118–21.CrossRefGoogle Scholar
  24. 24.
    Müller GP. The Treatment of Tuberculous Cervical Lymphadenitis. Annals of Surgery 1913;LVIII(4):433–450.CrossRefGoogle Scholar
  25. 25.
    Muluye D. Prevalence of tuberculous lymphadenitis in Gondar University Hospital, Northwest Ethiopia. BMC Public Health. 2013;13:435.CrossRefGoogle Scholar
  26. 26.
    Naing C. Meta-analysis: the association between HIV infection and extrapulmonary tuberculosis. Lung. 2013;191(1):27–34.CrossRefGoogle Scholar
  27. 27.
    Okten I, Management of esophageal perforation. Surg Today. 2001;31(1):36–9.CrossRefGoogle Scholar
  28. 28.
    Panesar J, Higgins K, Daya H, Forte V, Allen U. Nontuberculous mycobacterial cervical adenitis: a ten-year retrospective review. Laryngoscope. 2003;113:149–54.CrossRefGoogle Scholar
  29. 29.
    Paredes C, Delcampo F, Zamarron C, et al. Cardiac tamponade due to tuberculous mediastinal lymphadenitis. Tubercle. 1990;71:219–20.CrossRefGoogle Scholar
  30. 30.
    Perlman DC, D'Amico R, Salomon N. Mycobacterial diseases of the head and the neck. Curr Inf Dis Rep. 2001;3(3):233.CrossRefGoogle Scholar
  31. 31.
    Polesky A. Peripheral tuberculous lymphadenitis: epidemiology, diagnosis, treatment, and outcome. Medicine. 2005;84(6):350–62.CrossRefGoogle Scholar
  32. 32.
    Raul M. Popescu Lymph Node Tuberculosis- an attempt of clinico-morphological study and review of the literature. Rom J Morphol Embryol. 2014;55:553–67.Google Scholar
  33. 33.
    Rodriguez et al. Enfermedades infecciosas y microbiologia clinica vol 29 num 7 agosto settembre. 2011;29:502–9.Google Scholar
  34. 34.
    Shafer RW. Extrapulmonary tuberculosis in patients with human immunodeficiency virus infection. Medicine (Baltimore). 1991;70:384–97.CrossRefGoogle Scholar
  35. 35.
    Singh KK. Comparison of in-house polymerase chain reaction with conventional techniques for the detection of Mycobacterium tuberculosis DNA in granulomatous lymphadenopathy. J Clin Pathol. 2000;53(5):355–61.CrossRefGoogle Scholar
  36. 36.
    Singh B, Moodly M, Goga AD, Haffejee AA, et al. Dysphagia secondary to tuberculous lymphadenitis. S Afr J Surg. 1996;34:197–9.PubMedGoogle Scholar
  37. 37.
    Soussan M, Brillet PY, Mekinian A, Khafagy A, Nicolas P, Vessieres A, Brauner M. Patterns of pulmonary tuberculosis on FDG-PET/CT. Eur J Radiol. 2012;81:2872–6.CrossRefGoogle Scholar
  38. 38.
    Spyridis P. Mycobacterial cervical Lymphadenitis in children: clinical and laboratory factors of importance for differential diagnosis. Scand J Infect Dis. 2001;33(5)Google Scholar
  39. 39.
    Tan CH, Kontoyiannis DP, Viswanathan C, Iyer RB. Tuberculosis: a benign impostor. Am J Roentengenol. 2010;194:555–61.CrossRefGoogle Scholar
  40. 40.
    Tian G, Xiao Y, Chen B, Xia J, Guan H, Deng Q. FDG PET/CT for therapeutic response monitoring in multi-site non-respiratory tuberculosis. Acta Radiol. 2010;51:1002–6.CrossRefGoogle Scholar
  41. 41.
    Centers for Disease Control and Preventation, Treatment of tuberculosis, MMWR Recomm Rep. 2003;52:1–77.Google Scholar
  42. 42.
    William C. VORSANGER. Tuberculous Cervical Lymphadenitis. Cal West Med. 1937;47(3):194–198.Google Scholar
  43. 43.
    World Health Organisation. Global Tuberculosis Report 2017.Google Scholar
  44. 44.
    Wolf A, Desvignes L, Linas B, Banaiee N, Tamura T, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med. 2008;205:105–15.CrossRefGoogle Scholar
  45. 45.
    Xiong L, et al. Posterior mediastinal lymphadenitis with dysphagia as the main symptom a case report and literature review. J Thorac Dis. 2013;5(5):E189–94.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Yadla M, Sivakumar V, Kalawat T. Assessment of early response to treatment in extrapulmonary tuberculosis: role of FDG-PET. Indian J Nucl Med. 2012;27:136–7.CrossRefGoogle Scholar
  47. 47.
    Ying M, Ahuja AT, Evans R, King W, Metreweli C. Cervical lymphadenopathy: sonographic differentiation between tuberculous nodes and nodal metastases from non–head and neck carcinomas. J Clin Ultrasound. 1998;26:383–9.CrossRefGoogle Scholar
  48. 48.
    Forssbohm M, Zwahlen M, Loddenkemper R, Rieder HL. Demographic characteristics of patients with extrapulmonary tuberculosis in Germany. European Respiratory Journal. 2008;31(1):99–105.CrossRefGoogle Scholar
  49. 49.
    Chan-Young. Extra-pulmonary and pulmonary tuberculosis in Hong Kong. Int J Tuberc Lung Dis. 2002;6(10):879–86.Google Scholar
  50. 50.
    CDC. Trends in Tuberculosis—United States, 2008, MMWR March 20, 2009 / 58(10);249–253.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yakup Hakan Basaran
    • 1
  1. 1.NPISTANBUL Brain HospitalÜmraniye/IstanbulTurkey

Personalised recommendations