Skip to main content

Polymer Composite Strategies in Cancer Therapy, Augment Stem Cell Osteogenesis, Diagnostics in the Central Nervous System, and Drug Delivery

  • Chapter
  • First Online:
Polymer Nanocomposites in Biomedical Engineering

Abstract

This chapter covers the wide knowledge about polymer composite strategies in cancer therapy, augment stem cell osteogenesis, diagnostics in the central nervous system, and drug delivery. Many polymer composites were applied for the diagnosis and curing of cancer diseases. These areas include different types of polymer composites, their degradation, drug release mechanism from the polymer composites, and their needfulness for cancer therapy. In addition, this chapter explores the augmentation stem cell osteogenesis including morphology, environment, and polymer nanocomposites for osteogenesis. In the end, we focus on the drug delivery system for central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F (2006a) Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 3:340

    Google Scholar 

  • Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T (2006b) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Controlled Release 116:150

    Google Scholar 

  • Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed 14:1–16

    Google Scholar 

  • Al-Dimassi S, Abou-Antoun T, El-Sibai M (2014) Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol 16:511–516

    Google Scholar 

  • Amarnath Praphakar R, Munusamy MA, Sadasivuni KK, Rajan M (2016) Targeted delivery of rifampicin to tuberculosis-infected macrophages: design, in-vitro, and in-vivo performance of rifampicin loaded poly(ester amide)s nanocarriers. Int J Pharm 513(1–2):628–635

    Google Scholar 

  • Amarnath Praphakar R, Alarfaj AA, Munusamy MA, Azger Dusthackeer VN, Suresh Kumar S, Rajan M (2017a) Phosphorylated κ-carrageenan-facilitated chitosan nanovehicle for sustainable anti-tuberculosis multi drug delivery. ChemistrySelect 2:7100–7107

    Google Scholar 

  • Amarnath Praphakar R, Munusamy MA, Alarfaj AA, Suresh Kumar S, Rajan M (2017b) Zn2+ cross-linked sodium alginate-g-allylamine-mannose polymeric carrier on rifampicin for macrophage targeting tuberculosis nanotherapy. New J Chem 41:11324

    Google Scholar 

  • Amarnath Praphakar R, Jeyaraj M, Mehnath S, Higuchi A, Ponnamma D, Kishor Kumar S, Rajan M (2018a) pH-sensitive guar gum grafted lysine-β-cyclodextrin drug carrier for controlled releases on cancer cells. J Mater Chem B 6:1519–1530

    Google Scholar 

  • Amarnath Praphakar R, Shakila H, Azger Dusthackeer VN, Munusamy MA, Kumar S, Rajan M (2018b) Mannose conjugated multi-layered polymeric nano carrier system for controlled and targeted release on alveolar macrophages. Polym Chem 9:656–667

    Google Scholar 

  • Anitha A, Maya S, Sivaram AJ, Mony U, Jayakumar R (2016) Combinatorial nanomedicines for colon cancer therapy. Wiley Interdisc Rev Nanomed Nanobiotechnol 8:151–159

    Google Scholar 

  • Aymard P, Martin DR, Plucknett K, Foster TJ, Clark AH, Norton IT (2001) Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers 59(3):131–144

    Google Scholar 

  • Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 61:768

    Google Scholar 

  • Baeza A, Colilla M, Vallet-Regi M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337

    Google Scholar 

  • Baldwin JG, Wagner F, Martine LC, Holzapfel BM, Theodoropoulos C, Bas O, Savi FM, Werner C, DeJuan-Pardo EM, Hutmacher DW (2017) Periosteum tissue engineering in an orthotopic in vivo platform. Biomaterials 121:193–204

    Google Scholar 

  • Bara JJ, Richards RG, Alini M, Stoddart MJ (2014) Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32(7):1713–1723

    Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Google Scholar 

  • Bhadra D, Bhadra S, Jain P, Jain NK (2002) Pegnology: a review of PEG-ylated systems. Pharmazie 57:5

    Google Scholar 

  • Bildstein L, Dubernet C, Couvreur P (2011) Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliv Rev 63:3–23

    Google Scholar 

  • Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A, Ollier JC (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355:1114–1123

    Google Scholar 

  • Byrne JD, Betancourt TL, Brannon P (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    Google Scholar 

  • Cabral H, Kataoka K (2014) Progress of drug-loaded polymeric micelles into clinical studies. J Controlled Release 190:465–476

    Google Scholar 

  • Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Google Scholar 

  • Calvo P, Gouritin B, Chacun H, Desmaële D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharmaceut Res 18(8):1157–1166

    Google Scholar 

  • Chen GY, Pang DWP, Hwang SM, Tuan HY, Hu YC (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2):418–427

    Google Scholar 

  • Cheng Y, Dai Q, Morshed RA, Fan X, Wegscheid ML, Wainwright DA, Han Y, Zhang L, Auffinger B, Tobias AL, Rincón E, Thaci B, Ahmed AU, Warnke PC, He C, Lesniak MS (2014) Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 10(24):5137–5150

    Google Scholar 

  • Cooper PD (1993) Activators and inhibitors of complement. Kluwer Academic Publishers, Springer, Netherlands

    Google Scholar 

  • Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN (1995) Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 121:1099–1110

    Google Scholar 

  • Cui Y, Xu Q, Chow PK, Wang D, Wang CH (2013) Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 34(33):8511–8520

    Google Scholar 

  • Depan D, Girase B, Shah JS, Misra RD (2011) Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 7(9):3432–3445

    Google Scholar 

  • Dong J, Liao L, Shi L, Tan Z, Fan Z, Li S, Lu Z (2014) A bioresorbable cardiovascular stent prepared from L-lactide, trimethylene carbonate and glycolide terpolymers. Polym Eng Sci 54(6):1418–1426

    Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cba1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Google Scholar 

  • Egusquiaguirre SP, Igartua M, Hernandez RM, Pedraz JL (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93

    Google Scholar 

  • Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL (2015) Polymeric nanostructures for imaging and therapy. Chem Rev 115:10967–11011

    Google Scholar 

  • Emal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Cancer J Clin 61:69–90

    Google Scholar 

  • Eyckmans J (2006) Periosteum derived progenitor cells in bone tissue engineering

    Google Scholar 

  • Fadiran OO, Girouard N, Meredith JC (2018) Pollen fillers for reinforcing and strengthening of epoxy composites. Emergent Mater 1(1–2):95–103

    Google Scholar 

  • Fang JH, Lai YH, Chiu TL, Chen YY, Hu SH, Chen SY (2014) Magnetic core-shell nanocapsules with dual-targeting capabilities and co-delivery of multiple drugs to treat brain gliomas. Adv Healthc Mater 3(8):1250–1260

    Google Scholar 

  • Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20(8):857–869

    Google Scholar 

  • Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm 415:34–52

    Google Scholar 

  • Fu J, Chen T, Wang M, Yang N, Li S, Wang Y, Liu X (2013) Acid and alkaline dual stimuliresponsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano 7(12):11397–11408

    Google Scholar 

  • Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharmaceut 310(1):213–219

    Google Scholar 

  • Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X (2014) Angiopep–2 and activatable cell-penetrating peptide dual functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm 11(8):2755–2763

    Google Scholar 

  • Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27

    Google Scholar 

  • Gillies ER, Frechet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 10:35–43

    Google Scholar 

  • Girase B, Shah JS, Misra RDK (2012) Cellular mechanics of modulated osteoblasts functions in graphene oxide reinforced elastomers. Adv Eng Mater 14(4):B101–B111

    Google Scholar 

  • Govindaraj D, Rajan M (2018) Coating of bio-mimetic minerals-substituted hydroxyapatite on surgical grade stainless steel 316L by electrophoretic deposition for hard tissue applications. IOP Conf Series Mater Sci Eng 314(1):012029

    Google Scholar 

  • Govindaraj D, Rajan M, Hatamleh AA, Munusamy MA, Alarfa AA, Sadasivuni KK, Kumar SS (2017) The synthesis, characterization and in vivo study of mineral substituted hydroxyapatite for prospective bone tissue rejuvenation applications. Nanomed Nanotechnol Biol Med 13(8):2661–2669

    Google Scholar 

  • Govindaraj D, Pradeepkumar P, Rajan M (2018) Synthesis of morphology tuning multi mineral substituted apatite nanocrystals by novel natural deep eutectic solvents. Mater Discov 9:11–15

    Google Scholar 

  • Grund S, Bauer M, Fischer D (2011) Polymers in drug delivery—state of the art and future trends. Adv Eng Mater 13:B61–B87

    Google Scholar 

  • Gu Z, Biswas A, Joo KI, Hu B, Wang P, Tang Y (2010) Probing protease activity by single-fluorescent-protein nanocapsules. Chem Commun 46(35):6467–6469

    Google Scholar 

  • Hakeem A, Duan R, Zahid F, Dong C, Wang B, Hong F, Ou X, Jia Y, Lou X, Xia F (2014) Dual stimuli-responsive nano-vehicles for controlled drug delivery: mesoporous silica nanoparticles end-capped with natural chitosan. Chem Commun 50(87):13268–13271

    Google Scholar 

  • Haley B, Frenkel E (2008) Nanomedicine and Nanorobotics Urol Oncol: Semin Orig Invest 26:57–64

    Google Scholar 

  • Hall BK (1998) The embryonic development of bone. Am Sci 76:174–181

    Google Scholar 

  • Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J (2017) Scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392

    Google Scholar 

  • He H, WangY Wen H, Jia X (2014) Dendrimer-based multilayer nanocarrier for potential synergistic paclitaxel–doxorubicin combination drug delivery. RSC Adv 4:3643–3652

    Google Scholar 

  • Heinemann V, Douillard JY, Ducreux M, Peeters M (2013a) Angiogenic inhibitors for older patients with advanced colorectal cancer: does the age hold the stage? Cancer Treat Rev 39:592–601

    Google Scholar 

  • Heinemann V, Douillard JY, Ducreux M, Peeters M (2013b) Targeted therapy in metastatic colorectal cancer—an example of personalised medicine in action. Cancer Treat Rev 39:592–601

    Google Scholar 

  • Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66(17):2873–2896

    Google Scholar 

  • Hobel S, Aigner A (2010) Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo. Mol Biol 623:283

    Google Scholar 

  • Horton WA (1997) The biology of bone growth. Growth Genet Horm 6(2):1–3

    Google Scholar 

  • Horwitz EM, Gordon PL, Koo WKK, Marx JC, Neel MD, Ry McNall, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 99(13):8932–8937

    Google Scholar 

  • Howard MD, Jay M, Dziubla TD, Lu X (2008) PEGylation of nanocarrier drug delivery systems: state of the art. J Biomed Nanotechnol 4:133

    Google Scholar 

  • Huang S, Shao K, Liu Y, Kuang Y, Li J, An S, Guo Y, Ma H, Jiang C (2013) Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 7(3):2860–2871

    Google Scholar 

  • Huang ZH, Wei PF, Jin L, Hu XQ, Cai Q, Yang X (2017) Photoluminescent polyphosphazene nanoparticles for in situ simvastatin delivery for improving the osteocompatibility of BMSCs. J Mater Chem B 5:9300–9311

    Google Scholar 

  • Hwang DW, Son S, Jang J, Youn H, Lee S, Lee D, Lee YS, Jeong JM, Kim WJ, Lee DS (2011) A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials 32(21):4968–4975

    Google Scholar 

  • Ibrahim M, Sabouni R, Husseini GA (2017) Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr Med Chem 24(2):193–214

    Google Scholar 

  • Jeyaraj M, Amarnath Praphakar R, Rajan M (2016) Surface functionalization of natural lignin isolated from Aloe barbadensis Miller biomass by atom transfer radical polymerisation for enhanced anticancer efficacy. RSC Adv 6:51310–51319

    Google Scholar 

  • Jhaveri A, Deshpande P, Torchilin V (2014) Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 190:352–370

    Google Scholar 

  • Joosten EAJ, Bär PR, Gispen WH (1995) Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat. J Neurosci Res 41:481–490

    Google Scholar 

  • Kasinathan N, Jagani HV, Alex AT, Volety SM, Rao JV (2015) Strategies for drug delivery to the central nervous system by systemic route. Drug Delivery 22(3):243–257

    Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Google Scholar 

  • Kim S, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y (2010) A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 31(14):4157–4166

    Google Scholar 

  • Kim JH, Li Y, Kim MS, Kang SW, Jeong JH, Lee DS (2012) Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers. International Journal of Pharmaceutics 427:435–442

    Google Scholar 

  • Knezevic NZ, Trewyn BG, Lin VS (2011) Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem Commun 47(10):2817–2819

    Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288

    Google Scholar 

  • Ko E, Yang K, Shin J, Cho SW (2013) Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromol 14(9):3202–3213

    Google Scholar 

  • Kodaira H, Tsutsumi Y, Yoshioka Y, Kamada H, Kaneda Y (2004) The targeting of anionized polyvinylpyrrolidone to the renal system. Biomaterials 25:4309

    Google Scholar 

  • Koido S, Ohkusa T, Homma S, Namiki Y, Takakura K, Saito K, Ito Z, Kobayashi H, Kajihara M, Uchiyama K, Arihiro S, Arakawa H, Okamoto M, Gong J, Tajiri H (2013) Immunotherapy for colorectal cancer. World J Gastroenterol 19:8531–8542

    Google Scholar 

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2004) Paclitaxel nanoparticles for the potential treatment of brain tumors. J Controlled Release 99(2):259–269

    Google Scholar 

  • Krishnan P, Rajan M, Kumari S, Sakinah S, Priya SP, Amira F, Danjuma L, Ling MP, Fakurazi S, Arulselvan P, Higuchi A, Arumugam R, Alarfaj AA, Munusamy MA, Awang Hamat R, Benelli G, Murugan K, Suresh Kumar S (2017) Efficiency of newly formulated camptothecin with β-cyclodextrin-EDTA-Fe3O4 nanoparticle-conjugated nanocarriers as an anti-colon cancer (HT29) drug. Sci Rep 7:10962

    Google Scholar 

  • Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Neuwelt EA (1996) Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery 38(4):746–752

    Google Scholar 

  • Kumar P, Wu H, McBride JL, Jung KE, Hee Kim M, Davidson BL, Kyung Lee S, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448(7149):39–43

    Google Scholar 

  • Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K (2015) Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater Interfaces 7(5):3237–3252

    Google Scholar 

  • Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899

    Google Scholar 

  • Lampe KJ, Kern DS, Mahoney MJ, Bjugstad KB (2011) The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: protein distribution and the glial response. J Biomed Mater Res A 96(3):595–607

    Google Scholar 

  • Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32(8):795–803

    Google Scholar 

  • Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Frechet JMJ, Dy EE, Szoka FC (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Natl Acad Sci USA 103:16649–16654

    Google Scholar 

  • Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341

    Google Scholar 

  • Lee JH, Shin YC, Lee SM, Jin OS, Kang S, Hong SW, Jeong C, Huh JB, Han D (2015) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5:18833

    Google Scholar 

  • Lee SY, Yang CY, Peng CL, Wei MF, Chen KC, Yao CJ, Shieh MJ (2016) A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials 86:92–105

    Google Scholar 

  • Levi B, Derrick C, Wan Jason P, Jeong Hyun G, Januszyk M, Montoro D, Sorkin M, Aaron W, James Emily R, Shuli Li N, Quarto N, Lee M, Geoffrey C, Gurtner Longaker MT (2011) CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling. J Biol Chem 286(45):39497–39509

    Google Scholar 

  • Li JK, Wang N, Wu XS (1998) Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J Microencapsul 15(2):163–172

    Google Scholar 

  • Lin S, Cao L, Wang Q, Du J, Jiao D, Duan S, Wu J, Gan Q, Jiang X (2018) Tailored biomimetic hydrogel based on a photopolymerised DMP1/MCF/gelatin hybrid system for calvarial bone regeneration. J Mater Chem B 6:414–427

    Google Scholar 

  • Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31(5):688–705

    Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12(9–10):635–641

    Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    Google Scholar 

  • Lorenza G, Samuele C, Alberto F, Orietta M (2016) A novel electrostimulated drug delivery system based on PLLA composites exploiting the multiple functions of graphite nanoplatelets. ACS Appl Mater Interfaces 8:24909–24917

    Google Scholar 

  • Marcucci F, Lefoulon F (2004) Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discovery Today 9:219

    Google Scholar 

  • Martins P, Jesus J, Santos S, Raposo L, Rodrigues CR, Baptista P, Alexandra R (2015a) Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 20(9):16852–16891

    Google Scholar 

  • Martins P, Jesus J, Santos S, Raposo L, Rodrigues CR, Baptista P, Alexandra R (2015b) Organic and inorganic nano-systems used in cancer treatment. Molecules 20:16852–16891

    Google Scholar 

  • Mehnath S, Rajan M, Sathishkumar G, Amarnath Praphakar R, Jeyaraj M (2017a) Thermoresponsive and pH triggered drug release of cholate functionalized poly(organophosphazene)—polylactic acid co-polymeric nanostructure integrated with ICG. Polymer 133:119–128. https://doi.org/10.1016/j.polymer.2017.11.020

    Article  Google Scholar 

  • Mehnath S, Sathishkumar G, Arivoli A, Rajan M, Praphakar RA, Jeyaraj M (2017b) Green synthesis of AgNPs by Walnut seed extract and its role in photocatalytic degradation of a textile dye effluent. Trans Eng Sci 5(1):31–40

    Google Scholar 

  • Meyerhardt JA, Mayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352:476–487

    Google Scholar 

  • Missirlis D, Tirelli N, Hubbell JA (2005) Amphiphilic hydrogel nanoparticles. Preparation, characterization, and preliminary assessment as new colloidal drug carriers. Langmuir 21(6):2605–2613

    Google Scholar 

  • Monteiro OAC Jr, Airoldi C (1999) Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26(2–3):119–128

    Google Scholar 

  • Mrlik M, Sobolciak P, Krupa I, Kasak P (2018) Light-controllable viscoelastic properties of a photolabile carboxybetaine ester-based polymer with mucus and cellulose sulfate. Emergent Mater 1(1–2):35–45

    Google Scholar 

  • Munusamy MA, Suresh Kumar S, Rajan M, Alarfa AA (2017) Reducing indicator organism escherichia coli in drinking water using chitosan nano coated pot system: an inexpensive technique. Prog Biosci Bioeng 1(1):36–43

    Google Scholar 

  • Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, Puglisi G (2006) PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm 325(1–2):172–179

    Google Scholar 

  • Nagaraj A, Govindaraj D, Rajan M (2018) Magnesium oxide entrapped Polypyrrole hybrid nanocomposite as an efficient selective scavenger for fluoride ion in drinking water. Emergent Mater 1(1–2):25–33

    Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58(11):1423–1430

    Google Scholar 

  • Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu Q, Swaminathan G, Xiang D, Eberhart C, Hanes J (2012) A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Translat Med 4(149):149ra119

    Google Scholar 

  • Natarajan J, Madras G, Chatterjee K (2017) Development of graphene oxide-/galactitol polyester-based biodegradable composites for biomedical applications. ACS Omega 2:5545–5556

    Google Scholar 

  • Newman KD, McBurney MW (2004) Poly(D, L lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials 25(26):5763–5771

    Google Scholar 

  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589

    Google Scholar 

  • Oh JK, Park JM (2011) Nanomaterial: impacts on cell biology and medicine. Prog Polym Sci 36:168–189

    Google Scholar 

  • Oppenhiem RC (1981) Solid colloidal drug delivery systems: nanoparticles. Int J Pharm 8(3):217

    Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cba1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Google Scholar 

  • Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. MolInterv 3(2):90–105

    Google Scholar 

  • Park JB, Lee CS, Jang JH, Ghim J, Kim YJ, You S, Hwang D, Suh PG, Ryu SH (2012) Phospholipase signalling networks in cancer. Nat Rev Cancer 12(11):782–792

    Google Scholar 

  • Pasut G, Veronese FM (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961

    Google Scholar 

  • Patel T, Zhou J, Piepmeier JM, Saltzman MW (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 64(7):701–705

    Google Scholar 

  • Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Ahamed MB, Al-Maadeed MA (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1(1–2):55–65

    Google Scholar 

  • Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    Google Scholar 

  • Popelka A, Sobolčiak P, Mrlík M, Nogellova Z, Chodák I, Ouederni M, Al-Maadeed MA, Krupa I (2018) Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends. Emergent Mater 1(1–2):47–54

    Google Scholar 

  • Potten CS (1997) Stem cells. London Academic Press

    Google Scholar 

  • Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed 10:1001–1018

    Google Scholar 

  • Pradeepkumar P, Govindaraj D, Jeyaraj M, Munusamy MA, Rajan M (2017) Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomed Pharmacother 87:461–470

    Google Scholar 

  • Pradeepkumar P, Abdallah Mohamed E, Ali Hassan B, Rajan M (2018) Natural solvent-assisted synthesis of amphiphilic co-polymeric nanomicelle for prolonged release of camptothecin delivery. New J Chem 42(12):10366–10375. https://doi.org/10.1039/c8nj00901e

    Article  Google Scholar 

  • Rajan M, Hari Balakrishanan M (2015) Size controlled synthesis of biodegradable nanocarriers for targeted and controlled cancer drug delivery using salting out cation. Bull Mater Sci 39(1):69–77

    Google Scholar 

  • Rajan M, Raj V (2013a) Gelatin-PEG coated modified Chitosan/Hyaluronidase nanoparticles for tumor-targeted drug delivery and controlled release. Adv Mater Process Charact Appl 269–274

    Google Scholar 

  • Rajan M, Raj V (2013b) Potential drug delivery applications of chitosan based nanomaterials. Int Rev Chem Eng 5(2). ISSN: 2035-1755

    Google Scholar 

  • Rajan M, Raj V (2013c) Formation and electrochemical characterization of chitosan/poly lactic acid/poly ethylene glycol/gelatin nanoparticles. A novel biosystem for controlled drug delivery. Carbohydr Polym 98(1):951–958

    Google Scholar 

  • Rajan M, Raj V, Al-Arfaj AA, Murugan A (2013) Hyaluronidase enzyme core-5-fluorouracil loaded chitosan-PEG-gelatin polymer nanocomposites targeted and controlled drug delivery vehicles. Int J Pharm 453(2):514–522

    Google Scholar 

  • Rajan M, Murugan M, Ponnamma D, Kishor Kumar S, Munusamy MA (2016) Poly-carboxylic acids functionalized chitosan nanocarriers for controlled and targeted anti-cancer drug delivery. Biomed Pharmacother 83:201–211

    Google Scholar 

  • Rajan M, Amarnath Praphakar R, Govindaraj D, Arulselvan P, Suresh Kumar S (2017a) Cytotoxicity assessment of palbociclib-loaded chitosan-polypropylene glycol nano vehicles for cancer chemotherapy. Mater Today Chem 6:26–33

    Google Scholar 

  • Rajan M, Poorani K, Pradeepkumar P, Jeyanthinath M, Jeyaraj M, Mok Poi L, Palanisamy A, Akon H, Munusamy MA, Arumugam R, Benelli G, Murugan K, Suresh Kumar S (2017b) Magneto-chemotherapy for cervical cancer treatment with camptothecin loaded Fe3O4 functionalized β-cyclodextrin nanovehicles. RSC Adv 7:46271

    Google Scholar 

  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer composite materials; a review. Compos Sci Technol 61:11189–12224

    Google Scholar 

  • Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Google Scholar 

  • Rao M, Ahrlund-Richter L, Kaufman DS (2012) Concise review: cord blood banking, transplantation and induced pluripotent stem cell: success and opportunities. Stem Cells 30(1):55–60

    Google Scholar 

  • Richard OC, Oreffo Cooper C, Mason C, Clements M, Cells Mesenchymal Stem (2005) Mesenchymal stem cells. Stem Cell Rev 5(1):169–178

    Google Scholar 

  • Rottensteiner U, Sarker B, Heusinger D, Dafinova D, Rath SN, Beier JP, Kneser U, Horch RE, Detsch R, Boccaccini AR, Arkudas A (2014) In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Materials 7(3):1957–1974

    Google Scholar 

  • Rychahou P, Haque F, Shu Y, Zaytseva Y, Weiss HL, Lee EY, Mustain W, Valentino J, Guo P, Evers BM (2015) Delivery of RNA nanoparticles into colorectal cancer metastases following systemic administration. ACS Nano 9:1108–1116

    Google Scholar 

  • Safadi FF, Barbe MF, Abdelmagid SM, Rico MC, Aswad RA, Litvin J, Popoff SN (2009) Popoff bone structure, development and bone biology: bone pathology. https://doi.org/10.1007/978-1-59745-347-9_1

  • Safadi FF, Barbe MF, Abdelmagid SM, Rico MC, Aswad RA, Litvin J, Popoff SN (2018) Bone structure, development and bone biology: bone pathology. Available from: https://www.researchgate.net/publication/224929158_Bone_Structure_Development_and_Bone_Biology_Bone_Pathology (accessed Dec 20 2018)

  • Saheb DN, Jog JP (1999) Natural polymer composites: a review. Polym Adv Technol 18:351–363

    Google Scholar 

  • Schoenmakers RG, Van de Wetering P, Elbert DL, Hubbell JA (2004) The effect of the linker on the hydrolysis rate of drug-linked ester bonds. J Control Release 95:291–300

    Google Scholar 

  • Shahani S (2009) A pH-sensitive guar gum-grafted-lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells. Advanced Drug Delivery Systems: New Developments, New Technologies. bcc Research

    Google Scholar 

  • Shrivats AR, Mcdermottand MC, Hollinger JO (2014) Bone tissue engineering: state of the union. Drug Discov Today 19(6):781–786

    Google Scholar 

  • Sosic D, Brand-Saberi B, Schmidt C, Christ B, Olson E (1997) Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev Biol 185:229–243

    Google Scholar 

  • Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87(1):274–283

    Google Scholar 

  • Stichel CC, Wernermueller H (1998) Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Prog Neurobiol 56(2):119–148

    Google Scholar 

  • Sulistio A, Lowenthal J, Blencowe A, Marie N, Ong L, Sally L, Zhang X, Greg G (2011) Folic acid conjugated amino acid-based star polymers for active targeting of cancer cells. Biomacromolecules 12:3469–3477

    Google Scholar 

  • Sumathra M, Rajan M, Alyahya SA, Alharbi NS, Kadaikunnan S, Suresh Kumar S (2017) Development of self-repair nano-rod scaffold materials for implantation of osteosarcoma affected bone tissue. New J Chem. https://doi.org/10.1039/c7nj03143b

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364

    Google Scholar 

  • Teh SW, Mok PL, Rashid MA, Bastion MLC, Ibrahim N, Higuchi A, Murugan K, Rajan M, Suresh Kumar S (2018) Recent updates on treatment of ocular microbial infections by stem cell therapy: a review. Int J Mol Sci 19:558. https://doi.org/10.3390/ijms19020558. IF- 3.226

  • Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    Google Scholar 

  • Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2:2–11

    Google Scholar 

  • Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138:2151–2162

    Google Scholar 

  • Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJM, Schrama JG, Erdkamp FLG, Vos AH, van Groeningen CJ, Sinnige HAM, Richel DJ, Voest EE, Dijkstra JR, Vink-Borger ME, Antonini NF, Mol L, van Krieken JHJM, Dalesio O, Punt CJA, Engl N (2009a) Prognostic value of KRAS genotype in metastatic colorectal cancer (MCRC) patients treated with intensive triplet chemotherapy plus bevacizumab (FIr-B/FOx) according to extension of metastatic disease. J Med Chem 360:563–572

    Google Scholar 

  • Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJM, Schrama JG, Erdkamp FLG, Vos AH, van Groeningen CJ, Sinnige HAM, Richel DJ, Voest EE, Dijkstra JR, Vink-Borger ME, Antonini NF, Mol L, van Krieken JHJM, Dalesio O, Punt CJA, Engl N (2009b) Live cell integrated surface plasmon resonance biosensing approach to mimic the regulation of angiogenic switch upon anti-cancer drug exposure. J Med Chem 360:563–572

    Google Scholar 

  • Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71(3):431–444

    Google Scholar 

  • Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3

    Google Scholar 

  • Torshina NR, Jin Z, Diane Z, Heck E (2010) Catalytic therapy of cancer with ascorbate and extracts of medicinal herbs. eCAM7(2):203–212

    Google Scholar 

  • Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA (2008) Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 5(2):155–174

    Google Scholar 

  • Tummala S, Kuppusamy G, Satish Kumar MN, Praveen TK, Wadhwani A (2015) 5-Fluorouracil enteric-coated nanoparticles for improved apoptotic activity and therapeutic index in treating colorectal cancer. Drug Deliv 23(8):1–9

    Google Scholar 

  • Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY (2011) Personalized medicine with a nanochemistry twist: nanomedicine. Adv Drug Deliv Rev 63:1228–1246

    Google Scholar 

  • Verma RK, Mishra B, Garg S (2000) Osmotically controlled oral drug delivery. Drug Dev Ind Pharm 26:695–708

    Google Scholar 

  • Prashansa A (2014) significance of Polymers in Drug Delivery System. J Pharmacovigil 3:1

    Google Scholar 

  • Wang Y, Kim YM, Langer R (2003) In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A 66(1):192–197

    Google Scholar 

  • Wang YJ, Yang CR, Chen XF, Zhao NR (2006) Development and characterization of novel biomimetic composite scaffolds based on bioglass-collagen-hyaluronic acid-phosphatidylserine for tissue engineering applications. Macromol Mater Eng 291(3):254–262

    Google Scholar 

  • Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D (2011) Biocompatibility of graphene oxide. Nanoscale Res Lett 6(1):8

    Google Scholar 

  • Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198

    Google Scholar 

  • Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HK (2014) Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2:14017

    Google Scholar 

  • Wei Z, Ji-Shi W, Peng Z, Jie C, Ji-Lie K, Lian-Hua S, Huan-Ming X, Helmuth M (2017) Self-assembled ZnO nanoparticle capsules for carrying and delivering isotretinoin to cancer cells. ACS Appl Mater Interfaces 9:18474–18481

    Google Scholar 

  • Weissman I, Spangrude G, Heimfeld S, Smith L, Uchida N (1991) Stem-cells. Nature 353(6339):26–26

    Google Scholar 

  • Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161:264–273

    Google Scholar 

  • Wu X, Wang Z, Zhu D, Zong S, Yang L, Zhong Y, Cui Y (2013) pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer − lipid bilayer. ACS Appl Mater Interfaces 5(21):10895–10903

    Google Scholar 

  • Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D (2015a) Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 48:147–160

    Google Scholar 

  • Xiao Y, Wang T, Cao Y, Wang X, Zhang Y, Liu Y, Huo Q (2015b) Correction: Enzyme and voltage stimuli-responsive controlled release system based on β-cyclodextrin-capped mesoporous silica nanoparticles. Dalton Trans 44(9):4355–4361

    Google Scholar 

  • Yoo S, Hong S, Choi Y, Park JH, Nam Y (2014) Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8(8):8040–8049

    Google Scholar 

  • You X, Kang Y, Hollett G, Chen X, Zhao W, Gu Z, Wu J (2016) Polymeric nanoparticles for colon cancer therapy: overview and perspectives. J Mater Chem B 4:7779–7792

    Google Scholar 

  • Yuan Y, Jin X, Fan Z, Li S, Lu Z (2015) In vivo degradation of copolymers prepared from L-lactide, 1,3-trimethylene carbonate and glycolide as coronary stent materials. J Mater Sci Mater Med 26(3):139

    Google Scholar 

  • Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C (1999) Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release 60(2–3):179–188

    Google Scholar 

  • Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4:3833–3842

    Google Scholar 

  • Zhao P, Liu H, Deng H, Xiao L, Qin C, Du Y, Shi X (2014) A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Biointerfaces 123:657–663

    Google Scholar 

  • Zhu CL, Wang XW, Lin ZZ, Xie ZH, Wang XR (2014) Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles. J Food Drug Anal 22(1):18–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariappan Rajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajan, M., Praphakar, R.A., Pradeepkumar, P. (2019). Polymer Composite Strategies in Cancer Therapy, Augment Stem Cell Osteogenesis, Diagnostics in the Central Nervous System, and Drug Delivery. In: Sadasivuni, K., Ponnamma, D., Rajan, M., Ahmed, B., Al-Maadeed, M. (eds) Polymer Nanocomposites in Biomedical Engineering . Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04741-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04741-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04740-5

  • Online ISBN: 978-3-030-04741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics