Skip to main content

Biomedical Applications of Hydroxyapatite Nanocomposites

  • Chapter
  • First Online:
Polymer Nanocomposites in Biomedical Engineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

This book chapter details the recent and very recent work on biomedical applications of hydroxyapatite nanocomposites. Single component of hydroxyapatite has not fulfilled the all obligation of biomedical process. The hydroxyapatite-reinforced polymer nanocomposites imitate the inhabitant tissue microenvironment due to their porous and molecular structure. An emerging approach has been involved as the reinforced polymeric compounds and to include multiple functionalities. Wide ranges of nanocomposites such as carbon-based, polymeric, ceramic, and metallic nanomaterial can be integrated within the hydrogel network to obtain nanocomposites with superior properties and tailored functionality. Hydroxyapatite nanocomposites can be engineered to possess superior physical, chemical, electrical, and biological properties. Mainly this book chapter deals with the hydroxyapatite composites applied for various application specifically tissue engineering, drug delivery, gene carriers and photodynamic therapy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALG:

Alginate

ALP:

Alkaline phosphate activity

ARG:

Arginine

AMX:

Amoxillin-clavulanate

BMSCs:

Bone marrow-derived mesenchymal stem cells

BSP:

Bone sialoprotein

BMP-2:

Bone Morphogenic Protein

β-TCP:

Beta-Tri-calcium phosphate

CS:

Chitosan

CMC:

Carboxy Methyl Cellulose

CMPs:

Chitosan microspheres

CNT:

Carbon Nanotube

5-FCil:

5-Fluorouracil

nCHA:

Nanocrystalline Carbonated Hydroxyapatite

COLL:

Collagen

Dox:

Doxorubicin

DEX/BSA:

Dexamethasone–bovine serum albumin

ECM:

Extracellular Matrix

GG:

Gellan gum

GM:

Gentamicin

HA:

Hydroxyapatite

n-HA:

Nano-Hydroxyapatite

HARV:

High Perspective Proportion Vessel

MBG/HA:

Mesoporus Bioactive glass

MSCs:

Mesenchymal stem cells

hMSCs:

Human mesenchymal stem cells

MC3T3-E1:

osteoblast cell line separated from mus musculus calvaria

MMT:

Montmorillonite

PCL:

Polycaprolactone

PEG:

Polyethylene Glycol

PEI:

Polyethylen imine

PHB:

Poly(hydroxybutyrate)

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly-l-Lactic acid

PLEA:

Poly (ethylene adipate-co-d,l-lactic acid)

PVA:

Polyvinyl alcohol

mRNA:

messenger Ribonucleic acid

SA:

Sodium Alginate

SF:

Silk

SBF:

Stimulated Body Fluid

M-THPP:

Tetrakis Hydroxy Phenyl Porphrin

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

References

  • Abdeen R, Salahuddin N (2013) Modified Chitosan-Clay nanocomposite as a drug delivery system intercalation and in vitro release of Ibuprofen. J Chem 576370:9

    Google Scholar 

  • Akhbar S, Subuki I, Sharudin RW, Ismail MH (2017) Morphology of polycaprolactone/needle shaped hydroxyapatite (PCL/HAN) nanocomposite blends using ultrasound assisted melt blending. Mater Sci Eng 213:012025

    Google Scholar 

  • Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2(10):2075–2084

    Google Scholar 

  • Amaro Martins VC, Goissis G (2000) Nonstoichiometric hydroxyapatite-anionic collagen composite as support for the double sustained release of gentamicin and norfloxacin/ciprofloxacin. Artif Organs 24(3):224–230

    Google Scholar 

  • Antonio E, Forte Stefano G, Francesco Manieri F, Rodriguez Y, Baena Daniele D (2016) Preparation, optimization and property of PVA-HA/PAA composite hydrogel. 112:227–238

    Google Scholar 

  • Arcos D, Greenspan DC, Vallet-Regi M (2002) Influence of the stabilization temperature on textural and structural features and ion release in SiO2-CaO-P2O5 sol-gel glasses. Chem Mater 14:1515–1522

    Google Scholar 

  • Azami M, Samadikuchaksaraei A, Poursamar S (2010) Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs 33:86–95

    Google Scholar 

  • Baheiraei N, Azami M, Hosseinkhani H (2015) Investigation of magnesium incorporation within gelatin/calcium phosphate nanocomposite scaffold for bone tissue engineering. Int J Appl Ceram Technol 12(20):245–253

    Google Scholar 

  • Bajaj I, Survase S, Saudagar P, Singhal R (2007) gellan gum: fermentive production downstream processing and application. Food Technol Biotechnol 45:341–354

    Google Scholar 

  • Bakhtiari L, Rezaie H, Hosseinalipour S, Shokrgozar M (2010) Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram Int 36:2421–2426

    Google Scholar 

  • Barbani N, Guerra G, Cristallini C, Urciuoli P, Avvisati R, Sala A (2012) Hydroxyapatite/gelatin/gelan sponges as nanocomposite scaffold for bone reconstruction. J Mater Sci Mater Med 23:51–61

    Google Scholar 

  • Barth BM, Altinoglu EI, Shanmugavelandy SS, Kaiser JM, Crespo-Gonzalez D, DiVittore NA, McGovern C, Goff TM, Keasey NR, Adair JH, Loughran TP, Claxton DF, Kester M (2011) Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano 5(7):5325–5337

    Google Scholar 

  • Bartkowiak-Jowsa M, Bedzinski R, Szaraniec B, Chlopek J (2011) Mechanical, biological, and microstructural properties of biodegradable models of polymeric stents made of PLLA and alginate fibers. Acta Bioeng Biomech 13(4):21–28

    Google Scholar 

  • Basirun WJ, Tabrizi BN, Baradaran S (2017) Overview of hydroxyapatite–graphene nanoplatelets composite as bone graft substitute: mechanical behavior and in-vitro biofunctionality. Crit Rev Solid States Mater Sci 1–36

    Google Scholar 

  • Bellucci D, Anesi A, Salvatori R, Chiarini L, Cannillo V (2017) A comparative in vivo evaluation of bioactive glasses and bioactive glass-based composites for bone tissue repair. Mater Sci Eng C 79:286–295

    Google Scholar 

  • Benning L, Gutzweiler L, Tröndle K, Riba J, Zengerle R, Koltay P, Zimmermann S, Stark GB, Finkenzeller G (2017) Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. J Biomed Mater Res A 105(12):3231–3241

    Google Scholar 

  • Bertran O, Valle D, Revilla-Lopez LJ, Chaves G, Cardus G, Casas L, Casanovas MT, Turon J, Puiggalí J, Aleman C (2013) Mineralization of DNA into nanoparticles of hydroxyapatite. Dalton Trans 43(1):317–327

    Google Scholar 

  • Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8(4):1401–1421

    Google Scholar 

  • Bramhill J (2017) Bioactive nanocomposites for tissue repair and regeneration: a review. Int J Environ Res Public Health 14(66):1–2

    Google Scholar 

  • Budiatin AS, Zainuddin M, Khotib J (2014) biocompatable composite as gentamicin delivery system for osteomyelitis and bone regeneration. Int J Pharm Pharm Sci 6(3):223–226

    Google Scholar 

  • Cai X, Ten Hoopen S, Zhang W, Yi C, Yang W, Yang F, Jansen JA, Walboomers XF, Yelick PC (2017) Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro. J Biomed Mater Res A 105(9):2597–2607

    Google Scholar 

  • Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Google Scholar 

  • Chen S, Hao Y, Cui W, Chang J, Zhou Y (2013a) Biodegradable electrospun PLLA/chitosan membrane as guided tissue regeneration membrane for treating periodontitis. J Mater Sci 48:6567–6577

    Google Scholar 

  • Chen Y, Yang L, Huang S, Li Z, He J, Xu Z, Liu L, Cao Y, Sun L (2013b) Delivery system for DNA enzyme using arginine-modified hydroxyapatite nanoparticles for therapeutic application in a nasopharyngeal carcinoma model. Int J Nano Med 8:3107–3118

    Google Scholar 

  • Chen K, Liu J, Yang X, Zhang D (2017) Preparation, optimization and property of PVA-HA/PAA composite hydrogel. Mater Sci Eng C Mater Biol Appl 78:520–529

    Google Scholar 

  • Chung J-H, Kim YK, Kim K-H, Kwon T-Y, Vaezmomeni SZ, Samiei M, Aghazadeh M, Davaran S, Mahkam M, Asadi G, Akbarzadeh A (2016) Synthesis, characterization, biocompatibility of hydroxyapatite–natural polymers nanocomposites for dentistry applications. Artif Cells Nanomed Biotechnol 44(1):277–284

    Google Scholar 

  • Corcione CE, Gervaso F, Scalera F, Montagna F, Maiullaro T, Sannino A, Maffezzoli A (2017) 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. J Polym Eng 37(8):741–746

    Google Scholar 

  • Correia J, Correia S, Pereira H, Espregueira-Mendes J, Oliveira J, Reis R (2013) Tissue engineering strategies applied in the regeneration of the human intervertebral disk. J Biotechnol Adv 31:1514–1531

    Google Scholar 

  • Cunniffe GM (2010) Development and characterisation a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. J Mater Sci Mater Med 8:2293–2298

    Google Scholar 

  • Cunningham E, Dunne N, Clarke S, Seong Ying C, Walker G, Wilcox R, Unger RE, Buchanan F, Kirkpatrick CJ (2011) Comparative characterisation of 3-D hydroxyapatite scaffolds developed via replication of synthetic polymer foams and natural marine sponges. J Tissue Sci Eng S:1

    Google Scholar 

  • Curtin CM (2012) Innovative collagen nano-hydroxyapatite scaffolds offer a highly effi cient non-viral gene delivery platform for stem cell-mediated bone formation. Adv Mater 24(6):749–754

    Google Scholar 

  • Djagny KB, Wang Z, Xu S (2001) Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr 41:481–492

    Google Scholar 

  • Dongming R, Ping C, Yuchao Y, Qingtao L, Wenbing W, Xingxing F, Jie Z, Zhongyu H, Jing T, Jun O (2016) Fabrication of gelatin/PCL electrospun fiber mat with bone powder and the study of its biocompatibility. J Funct Biomater 7(6):1–11

    Google Scholar 

  • Dou XC, Zhu XP, J. Zhou HQ, Cai J, Tang Q, Li L (2011) Minocycline-released hydroxyapatite-gelatin nanocomposite and its cytocompatibility in vitro. Biomed Mater 025002, 1–8

    Google Scholar 

  • Fadiran OO, Girouard N, Carson Meredith J (2018) Pollen fillers for reinforcing and strengthening of epoxy composites. Emergent Mater 1(1–2):95–103

    Google Scholar 

  • Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UG, Lelkes PI (2012) Electrospun chitosan/hydroxyapatite nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33(36):9167–9178

    Google Scholar 

  • Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453

    Google Scholar 

  • Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659

    Google Scholar 

  • Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18(3):241–268

    Google Scholar 

  • Gong Y, Han G, Zhan Y, Pan Y, Xia Y, Wu Y (2012) Antifungal activity and cytotoxicity of zinc, calcium and copper alginate fibers. Biol Trace Elem Res 148:415–419

    Google Scholar 

  • Gorgieva S, Kokol V (2011) Collagen-vs. Gelatin-based biomaterials and their biocompatibility: review and prespective. In Biomaterials applications for nanomedicine. In Tech, pp 1–37

    Google Scholar 

  • Govindaraj D, Rajan M (2018) Coating of Bio-mimetic minerals-substituted hydroxyapatite on surgical grade stainless steel 316L by electrophoretic deposition for hard tissue applications. In: IOP conference series: materials science and engineering, vol 314, issue no. 1, p 012029

    Google Scholar 

  • Govindaraj D, Rajan M, Munusamy MA, Dakshinamoorthi Balakumaran M, Kalaichelvan PT (2015) Osteoblast compatibility of minerals substituted hydroxyapatite reinforced poly(sorbitol sebacate adipate) nanocomposites for bone tissue application. RSC Adv 5:44705–44713

    Google Scholar 

  • Govindaraj D, Govindaraj C, Rajan M (2017a) Binary functional porous multi mineral–substituted apatite nanoparticles for reducing osteosarcoma colonization and enhancing osteoblast cell proliferation. Mater Sci Eng C 79:875–885

    Google Scholar 

  • Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Higuchi A, Suresh Kumar S (2017b) Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: in vivo biological performance. Mater Chem Phys 194:77–89

    Google Scholar 

  • Govindaraj D, Rajan M, Murugan A, Alarfaj Abdullah A, Suresh Kumar S (2017c) Mineral-substituted hydroxyapatite reinforced poly(raffinose-citric acid)–polyethylene glycol nanocomposite enhances osteogenic differentiation and induces ectopic bone formation. New J Chem 41:3036–3047

    Google Scholar 

  • Govindaraj D, Rajan M, Hatamleh AA, Munusamy MA, Alarfaj AA, Sadasivuni KK, Suresh Kumar S (2017d) The synthesis, characterization and in vivo study of mineral substituted hydroxyapatite for prospective bone tissue rejuvenation applications. Nanomed Nanotechnol Biol Med 13(8):2661–2669

    Google Scholar 

  • Govindaraj D, Rajan M, Hatamleh AA, Munusamy MA, Alarfaj AA (2018a) From waste to high-value product: jackfruit peel derived pectin/apatite bionanocomposites for bone healing applications. Int J Biol Macromol 106:293–301

    Google Scholar 

  • Govindaraj D, Pradeepkumar P, Rajan M (2018b) Synthesis of morphology tuning multi mineral substituted apatite nanocrystals by novel natural deep eutectic solvents. Mater Discov 9:11–15

    Google Scholar 

  • Guo BL, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500

    Google Scholar 

  • Hajiali F, Tajbakhsh S, Shojaei A (2018) Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev 1558–3716

    Google Scholar 

  • Hassan MI, Sultana N, Hamdan S (2014) Bioactivity assessment of poly(ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. J Nanomater 573238:1–6

    Google Scholar 

  • He P, Ng K, Toh S, Goh J (2012) In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. Biomacromolecules 13:2692–2703

    Google Scholar 

  • Hench LL, Andersson O, Wilson J (eds) (1993) An introduction to bioceramics. In: Bioactive glasses, vol 1. World Scientific Publishing, pp 139–180

    Google Scholar 

  • Hossein J, Ensieh Ghasemain L, Thomas JW, Roshanak R, Yadollah A (2017) A review of drug delivery systems based on nanotechnogy and green chemistry green nanomedicine. Int J Nanomed 12:2957–2978

    Google Scholar 

  • Hu W, Yu H (2013) Coelectrospinning of chitosan/alginate fibers by dual-jet system for modulating material surfaces. Carbohydr Polym 95:716–727

    Google Scholar 

  • Hunter K, Ma T (2013) In vitro evaluation of hydroxyapatite-chitosan-gelatin composite membrane in guided tissue regeneration. J Biomed Mater Res A 101:1016–1025

    Google Scholar 

  • Illa MP, Khandelwal M, Sharma CS (2018) Bacterial cellulose-derived carbon nanofibers as anode for lithium-ion batteries. Emergent Mater 1(3–4):1–6

    Google Scholar 

  • Isikli C, Hasirci V, Hasirci N (2012) Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regenerative Med 6(2):135–143

    Google Scholar 

  • Jansson PE, Lindberg B, Sandford P (1983) Molecular origin for the thermal stability of S-88 gum produced by Pseudomonas. Carbohydr Res 124:135–139

    Google Scholar 

  • Jianchao Z, Ping L (2012) The review on electrospun gelatin fiber scaffold. J Res Updates Polym Sci 1:59–71

    Google Scholar 

  • Jiaxzhen Z, Jingyi N, Qirong Z, Youliang L, Zhengke W, Qiaoling H (2014) Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. J Biomed Mater Poly Res 25:61–74

    Google Scholar 

  • Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E (2009) Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomater 5(1):305–315

    Google Scholar 

  • Junxing L, Aihua H, Jianfen Z, Charles CH (2006) Gelatin and gelatin–hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 7:2243–2247

    Google Scholar 

  • Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H (2005) Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA–PEG/hydroxyapatite composite. Biomaterials 26(1):73–79

    Google Scholar 

  • Kane RJ, Weiss-Bilka HE, Meagher MJ, Liu Y, Gargac JA, Niebur GL, Wagner DR, Roeder RK (2015) Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater 17:16–25

    Google Scholar 

  • Kang K, Veeder G (1982) Gellan polysaccharide S-60 and bacterial fermentation process for its preparation. US 4326053A

    Google Scholar 

  • Kang E, Choi Y, Chae S, Moon J, Chang J, Lee S (2012) Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater 24:4271–4277

    Google Scholar 

  • Khan M, Islam J, Khan M (2012) Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. J Biomed Mater Res A 100:3020–3028

    Google Scholar 

  • Khanarian N, Jiang J, Wan L, Mow V, Lu H (2012) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng 18:533–545

    Google Scholar 

  • Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous- derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785

    Google Scholar 

  • Kim HJ, Kim UJ, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42:1226–1234

    Google Scholar 

  • Kim B, Kim J, Chung Y, Sin Y, Ryu K, Lee J, You H (2013) Growth and osteogenic differentiation of alveolar human bone marrow-derived mesenchymal stem cells on chitosan/hydroxyapatite composite fabric. J Biomed Mater Res A 101:1550–1558

    Google Scholar 

  • Klesing J, Wiehe A, Gitter B, Grafe S, Epple M (2010) Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy. J Mater Sci Mater Med 21(3):887–892

    Google Scholar 

  • Kolanthai E, Ganesan K, Epple M, Narayana Kalkura S (2016) Synthesis of nanosized hydroxyapatite/agarose powders for bonefiller and drug delivery application. Mater Today Commun 8:31–40

    Google Scholar 

  • Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, du Toit LC, Pillay V (2016) A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 21(11):1580

    Google Scholar 

  • Kopp M, Rotan O, Papadopoulos C, Schulze N, Meyer H, Epple M (2017) Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells. PLoS One 12(6):0178260

    Google Scholar 

  • Kutikov AB, Reyer KA, Song J (2013) Shape-memory performance of thermoplastic amphiphilic triblock copolymer poly(d, l-lactic acid-co-ethylene glycol-co-d, l-lactic acid) (PELA)/hydroxyapatite composites filled with nanometer calcium carbonate. J Macromol Sci Part B Phys 52(7):964–972

    Google Scholar 

  • Lan L, Shuang Y, Miron RJ, Junchao W, Yufeng Z, Meng Z (2014) In vitro characterization of PBLG-g-HA/PLLA nanocomposite scaffolds. J Wuhan Univ Technol Mater Sci Ed 29(4):841–847

    Google Scholar 

  • Lee G, Park J, Shin U, Kim H (2011) Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7:3178–3186

    Google Scholar 

  • Lee SU, Min KH, Jeong SY, Bae H, Lee SC (2013) Calcium phosphate-reinforced photosensitizer-loaded polymer nanoparticles for photodynamic therapy. Chem Asian J 8(12):3222–3229

    Google Scholar 

  • Li RH (1998) Materials for immunoisolated cell transplantation. Adv Drug Deliv Rev 133:87–109

    Google Scholar 

  • Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124

    Google Scholar 

  • Liao F, Chen Y, Li Z, Wang Y, Shi B, Gong Z, Cheng X (2010) A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 21:489–496

    Google Scholar 

  • Liu TY, Chen SY, Li JH, Liu DM (2006) Study on drug release behaviour of CDHA/chitosan nanocomposites-effect of CDHA nanoparticles. J Control Release 112(1):88–95

    Google Scholar 

  • Liu L, Liu JY, Kong XD, Cai YR, Yao JM (2011) Porous composite scaffolds of hydroxyapatite/ silk fibroin via two-step method. Polym Adv Technol 22:909–914

    Google Scholar 

  • Liu Y, Sakai S, Taya M (2012) Production of endothelial cell-enclosing alginate-based hydrogel fibers with a cell adhesive surface through simultaneous cross-linking by horseradish peroxidase-catalyzed reaction in a hydrodynamic spinning process. J Biosci Bioeng 114:353–359

    Google Scholar 

  • Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5(17014):1–16

    Google Scholar 

  • Luo Y, Lode A, Gelinsky M (2013) Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mater 2:777–783

    Google Scholar 

  • Madhumathi K, Jeevana Rekha L, Sampath Kumar TS (2018) Tailoring antibiotic release for the treatment of periodontal infrabony defects using bioactive gelatin alginate/apatite nanocompositefilms. J Drug Delivery Sci Technol 43:57–64

    Google Scholar 

  • Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M (2010) Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res 28:677–686

    Google Scholar 

  • Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Google Scholar 

  • Marino A, Tonda-Turo C, De Pasquale D, Ruini F, Genchi G, Nitti S, Cappello V, Gemmi M, Mattoli V, Ciardelli G (2016) Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim Biophys Acta (BBA) Gen Subj 1861:386–395

    Google Scholar 

  • McCarthy G (2017) Calcium pyrophosphate dihydrate, hydroxyapatite, and miscellaneous crystals. In: Primer on the rheumatic diseases. Springer Link, pp 263–270

    Google Scholar 

  • Meng T, Yi C, Liu L, Karim A, Gong X (2018) Enhanced thermoelectric properties of two-dimensional conjugated polymers. Emergent Mater 1(1–2):1–0

    Google Scholar 

  • Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, Li Y, Aoki I, Ono K, Takahashi H, Cabral H, Nishiyama N, Kataoka K (2015) Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano 9(6):5913–5921

    Google Scholar 

  • Min KH, Lee HJ, Kim K, Kwon IC, Jeong SY, Lee SC (2012) The tumor accumulation and therapeutic efficacy of doxorubicin carried in calcium phosphate-reinforced polymer nanoparticles. Biomaterials 23:5788–5797

    Google Scholar 

  • Mousa M, Evans ND, Oreffo ROC, Dawson JI (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 159:204–214

    Google Scholar 

  • Muthu Vignesh V, Arunpandian B, Aruna Priyadharshini S, Agnes Aruna J, Saravana Kumar J, Selvkumar M, Hemanth M, Eko S, Mustafa Y (2015) Tangible nanocomposites with diverse properties for heart valve application. Sci Technol Adv Mater 16:033504

    Google Scholar 

  • Neelgund GM, Oki AR (2016) Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J Colloid Interface Sci 484:135–145

    Google Scholar 

  • Neumann S, Kovtun A, Dietzel ID, Epple M, Heumann R (2009) The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials 30:6794–6802

    Google Scholar 

  • Nguyen T, Lee B (2012) Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. J Biomater Appl 27:311–321

    Google Scholar 

  • Nguyen D, McCanless J, Mecwan M, Noblett A, Haggard W, Smith R (2013) Balancing mechanical strength with bioactivity in chitosan–calcium phosphate 3D microphhere scaffolds for bone tissue engineering: air-vs freeze drying processes. J Biomater Sci Polym 24:1071–1083

    Google Scholar 

  • Niu L, Zou R, Liu QD, Li QL, Chen XM, Chen ZQ (2012) A novel nanocomposite particle of hydroxyapatite and silk fibroin: biomimetic synthesis and its biocompatibility. J Nanomater 729457(2010):1–7

    Google Scholar 

  • Nomoto T, Fukushima S, Kumagai M, Inoue A, Mi P, Maeda Y, Toh K, Matsumoto Y, Morimoto Y, Kishimura A, Nishiyama N, Kataoka K (2016) Calcium phosphate-based organic–inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy. Biomater Sci 4:826–838

    Google Scholar 

  • Nouri A, Castro R, Santos JL, Fernandes C, Rodrigues J, Tomas H (2012) Calcium phosphate-mediated gene delivery using simulated body fluid (SBF). Int J Pharm 434:199–208

    Google Scholar 

  • Oh S, Oh N, Appleford M, Ong JL (2006) Bioceramics for tissue engineering applications—a review. Am J Biochem Biotechnol 2(2):49–56

    Google Scholar 

  • Park J, Lee E, Knowles J, Kim H (2014) Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration. J Biomater Appl 28:1079–1084

    Google Scholar 

  • Park JE, Jang YS, Park IS, Jeon JG, Bae TS, Lee MH (2017) The effect of multi-walled carbon nanotubes/hydroxyapatite nanocomposites on biocompatibility. Adv Compos Mater 27:53–65

    Google Scholar 

  • Peng H, Yin Z, Liu H, Chen X, Feng B, Yuan H, Su B, Ouyang H, Zhang Y (2012) Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology 23:485102

    Google Scholar 

  • Phipps MC, Xu YY, Bellis SL (2012) Delivery of platelet-derived growth factor as a chemotactic factor for mesenchymal stem cells by bone-mimetic electrospun scaffolds. PLoS ONE 7(7):e40831

    Google Scholar 

  • Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169

    Google Scholar 

  • Pistone A, Iannazzo D, Panseri S, Montesi M, Tampieri A, Galvagno S (2014a) Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering. Nanotechnology 25(42):425701

    Google Scholar 

  • Pistone A, Iannazzo D, Panseri S, Montesi M, Tampieri A, Galvagno S (2014) Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering. Nanotechnology 25:425701, 1–9

    Google Scholar 

  • Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Basheer Ahamed M, Al-Maadeed MAA (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1(1–2):55–65

    Google Scholar 

  • Popelka A, Sobolčiak P, Mrlík M, Nogellova Z, Chodák I, Ouederni M, Al-Maadeed MA, Krupa I (2018) Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends. Emergent Mater 1(1–2):47–54

    Google Scholar 

  • Qiu C, Chen M, Yan H, Wu HK (2007) Generation of uniformly sized alginate microparticles for cell encapsulation by using a soft-lithography approach. Adv Mater 19:1603–1607

    Google Scholar 

  • Raina DB, Larsson D, Mrkonjic F, Isaksson H, Kumar A, Lidgren L, Tagil M (2018) Gelatin-hydroxyapatite-calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: in-vitro and in-vivo carrier properties. J Control Release 272:83–96

    Google Scholar 

  • Ramadas M, Bharath G, Ponpandian N, Ballamurugan AM (2017) Investigation on biophysical properties of Hydroxyapatite/Graphene oxide (HAp/GO) based binary nanocomposite for biomedical applications. Mater Chem Phys 199:179–184

    Google Scholar 

  • Ramirez-Agudelo R, Scheuermann K, Gala-Garcia A, Monteiro APF, Pinzon-Garcia AD, Cortes ME, Sinisterra RD (2018) Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: effective antitumoral and antibacterial activity. Mater Sci Eng C Mater Biol Appl 83:25–34

    Google Scholar 

  • Rao SH, Harini B, Shadamarshan RPK, Balagangadharan K, Selvamurugan N (2017) Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signaling in bone tissue engineering. Int J Biol Macromol 17:32128–32131

    Google Scholar 

  • Reddy R, Swamy MKS (2005) The use of hydroxyapatite as a bone graft substitute in orthopaedic conditions. Miscellaneous 39(1):52–54

    Google Scholar 

  • Roul J, Mohapatra R, Sahoo SK, Tribhuvan N (2012) Design and characterization of novel biodegradable polymer-clay-hydroxyapatite nanocomposites for drug delivery applications. Asian J Biomed Pharm Sci 2(11):19–23

    Google Scholar 

  • Samaneh S, Samandari S (2017) Biocompatible nanocomposite scaffolds based on copolymergrafted chitosan for bone tissue engineering with drug delivery capability. Mater Sci Eng C C75:721–732

    Google Scholar 

  • Samira J, Khosro A (2015) Application of hydroxyapatite nanoparticle in the drug delivery systems. Mol Pharm J Org Process Res 3(1):1000–1118

    Google Scholar 

  • Sara Borrego G, Lilian B, Romero S, Jesus B, Aranzazu D (2018) Nanostructured hybrid device mimicking bone extracellular matrix as local and sustained antibiotic delivery system. Microporous Mesoporous Mater 256:165–176

    Google Scholar 

  • Seeherman H, Wozney JM (2005) Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 16(3):329–345

    Google Scholar 

  • Seyedjafari E, Soleimani M, Ghaemi N, Shabani I (2010) Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 11(11):3118–3125

    Google Scholar 

  • Shi P, Zuo Y, Li X, Zou Q, Liu H, Zhang L, Li Y, Morsi YS (2010) Gentamicin-impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy. J Biomed Mater Res Part A 93(3):1020–1031

    Google Scholar 

  • Song W, Markel DC, Wang S, Shi T, Mao G, Ren W (2012) Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology 23(11):115101, 1–16

    Google Scholar 

  • Song W, Yu X, Markel DC, Shi T, Ren W (2013) Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Biofabrication 5(035006):1–11

    Google Scholar 

  • Sotome S, Uemura T, Kikuchi M, Chen J, Itoh S, Tanaka J, Tateishi T, Shinomiya K (2004) Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater Sci Eng C 24:341–347

    Google Scholar 

  • Suganya S, Venugopal J, Ramakrishna S, Lakshmi B, Dev V (2014) Aloe vera/silk fibroin/hydroxyapatite incorporated electrospun nanofibrous scaffold for enhanced osteogenesis. J Biomater Tissue Eng 4:9–19

    Google Scholar 

  • Sumathra M, Rajan M (2017) Greener synthesis of nano hydroxyapatite using fatty acids template for the application of tissue engineering nano hydroxyapatite: fatty acids synthesis and characterizations. J Mol Pharm Org Process Res 5(1):1000136, 1–4

    Google Scholar 

  • Sumathra M, Rajan M, Alyahya SA, Alharbi NS, Shine K, Suresh Kumar S (2017a) Development of self-repair Nano-rod scaffold materials for implantation of osteosarcoma affected bone tissue. New J Chem 42:725–735

    Google Scholar 

  • Sumathra M, Govindaraj D, Jeyaraj M, Arfaj AA, Munusamy MA, Suresh Kumar S, Rajan M (2017b) Sustainable pectin fascinating hydroxyapatite nanocomposite scaffolds to enhance tissue regeneration. Sustain Chem Pharm 5:46–53

    Google Scholar 

  • Sumathra M, Munusamy MA, Alarfaj AA, Rajan M (2018a) Osteoblast response to Vitamin D3 loaded cellulose enriched hydroxyapatite Mesoporous silica nanoparticles composite. Biomed Pharmacother 103:858–868

    Google Scholar 

  • Sumathra M, Munusamy MA, Alarfaj AA, Rajan M (2018b) A phosphorylated chitosanarmed hydroxyapatite nanocomposite for advancing activity on osteoblast and osteosarcoma cells. New J Chem. https://doi.org/10.1039/c8nj01316k

  • Sumathra M, Sadasivuni KK, Suresh Kumar S, Rajan M (2018c) Cisplatin-Loaded graphene oxide/chitosan/hydroxyapatite composite as a promising tool for osteosarcoma-affected bone regeneration. ACS Omega 3(11):14620–14633

    Google Scholar 

  • Sun B, Tran KK, Shen H (2009) Enabling customization of non-viral gene delivery systems for individual cell types by surface-induced mineralization. Biomaterials 30(31):6386–6393

    Google Scholar 

  • Tanaka T, Hirose M, Kotobuki N, Ohgushi H, Furuzono T, Sato J (2007) Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells. Mater Sci Eng C 27(4):817–823

    Google Scholar 

  • Tanase C, Sartoris A, Popa M, Verestiuc L, Unger R, Kirkpatrick C (2013) In vitro evaluation of biomimetic chitosan–calcium phosphate scaffolds with potential application in bone tissue engineering. Biomed Mater 8:025002

    Google Scholar 

  • Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU (2014) Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater 39:95–110

    Google Scholar 

  • Thien DVH, Ho MH, Hsiao SW, Wet CHL (2015) Chemical process to enhance osteoconductivity of electrospun chitosan nanofibers. J Mater Sci 50(4):1575–1585

    Google Scholar 

  • Unger RE, Wolf M, Peters K, Motta A, Migliaresi C, Kirkpatrick CJ (2004) Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials 25:1069–1075

    Google Scholar 

  • Vekatesan J, Kim SK (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 10(10):3124–3140

    Google Scholar 

  • Venkatasubbu GD, Ramasamy S, Ramakrishnan V, Kumar J (2011) Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin. J Biomed Nanotechnol 7(6):759–767

    Google Scholar 

  • Villa MM (2015) Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 103(2):243–253

    Google Scholar 

  • Wang X, Li W (2016) Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration. Nanotechnology 27(22):225102

    Google Scholar 

  • Wang HL, Zuo Y, Zhang L, Yang WH, Zou Q, Zhou S, Li YB (2010) Preparation and characterisation of nanohydroxyapatite–sodium alginate–polyvinyl alcohol composite scaffold’. Mater Res Innov 14(5):375–380

    Google Scholar 

  • Wang L, Li C, Chen Y, Dong S, Chen X, Zhou Y (2013) Poly(lactic-co-glycolic) acid/nanohydroxyapatite scaffold containing chitosan microspheres with adrenomedullin delivery for modulation activity of osteoblasts and vascular endothelial cells. Biomed Res Int 530712:1–13

    Google Scholar 

  • Wang Z, Wang Y, Ito Y, Zhang P, Chen X (2016) A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Sci Rep 6:20770

    Google Scholar 

  • Wu C-J, Gaharwar AK, Schenailder PJ, Gudrum Schmidt C (2010) Development of Biomedical polymer-silicate nanocomposites: a materials science perspective. Material 3:2986–30056

    Google Scholar 

  • Wu SY, An SSA, Hulme J (2015) Current applications of graphene oxide in nanomedicine. Int J Nanomed 10(Spec Iss):9–24

    Google Scholar 

  • Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, Sefat F (2016) Potential of electrospun nano fibers for biomedical and dental applications. Materials (Basel) 9(2):73, 1–21

    Google Scholar 

  • Zhang BP, Tang SH, Zhang L, Ren-Fa L, Lu HF, Jin AM, Wang XD (2011) J Clin Rehabilit Tissue Eng Res (CRTER) 15:3871 (Wiely Publication)

    Google Scholar 

  • Zhang J, Nie J, Zhang Q, Li Y, Wang Z, Hu Q (2014) Difference between chitosan hydrogels via alkaline and acidic solvent systems. J Biomater Sci Polym Ed 25:61–74

    Google Scholar 

  • Zhao L, Weir M, Xu H (2010) An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 31:6502–6510

    Google Scholar 

  • Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohyd Res 405:23–32

    Google Scholar 

  • Zhijiang C, Cong Z, Jie G, Qing Z, Kongyin Z (2018) Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C Mater Biol Appl 2:29–40

    Google Scholar 

  • Zhou Z, Li H, Wang K, Guo Q, Li C, Jiang H, Hu Y, Oupicky D, Sun M (2017) Bioreducible cross-linked hyaluronic acid/calcium phosphate hybrid nanoparticles for specific delivery of siRNA in melanoma tumor therapy. ACS Appl Mater Interfaces 9(17):14576–14589

    Google Scholar 

  • Zhu M, Zhang J, Tao C, He X, Zhu Y (2014) Design of mesoporous bioactive glass/hydroxyapatite composites for controllable co-delivery of chemotherapeutic drugs and proteins. Mater Lett 115:194–197

    Google Scholar 

  • Zohaib K, Mhammad Z, Saad Q, Sana Shahab, Mustafa N, Ammar A (2014) Advances in nanotechnology for rregenerative dentistry. Mater Basel 2015(2):717–731

    Google Scholar 

  • Zuo G, Wan Y, Zhang Y (2012) Preparation and characterization of a novel laminated magnetic hydroxyapatite for application on gene delivery. Mater Lett 68:225–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariappan Rajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajan, M., Sumathra, M. (2019). Biomedical Applications of Hydroxyapatite Nanocomposites. In: Sadasivuni, K., Ponnamma, D., Rajan, M., Ahmed, B., Al-Maadeed, M. (eds) Polymer Nanocomposites in Biomedical Engineering . Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04741-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04741-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04740-5

  • Online ISBN: 978-3-030-04741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics