Skip to main content

Shape Memory Polymer Composites in Biomedical Field

  • Chapter
  • First Online:
Polymer Nanocomposites in Biomedical Engineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 1360 Accesses

Abstract

This chapter is anticipated to provide a brief insight into shape memory polymers (SMPs). The insight comprises of the designing aspects pertaining to SMP which include a description of mechanical properties, biocompatibility, hemocompatibility, genotoxicity, histocompatibility, biodegradability, and sterilizability. The biocompatibility comprising of cytotoxicity, mitochondrial activity, membrane damage, and cytokine production is described. The main discussion is intended toward the biomedical applications of shape memory polymer composites. In addition to that, electro-active shape memory polymer composites are mentioned along with SMPs containing fillers like Ni, electromagnetic fillers, and carbon nanotubes (CNTs). The impact on the addition of these fillers on the overall characteristics of the shape memory polymer composite is discussed. The potential of different polymer materials with their applicability in the biomedical field and their current research progress is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22:1304–1309

    Article  Google Scholar 

  • Bamberg CE, Mackay CR, Lee H, Zahra D, Jackson J, Lim YS, Whitfeld PL, Craig S, Corsini E, Lu B, Gerard C (2010) The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J Biol Chem 285:7633–7644

    Article  Google Scholar 

  • Benites CI, Amado LL, Vianna RAP, da Graça Martino-Roth M (2006) Micronucleus test on gas station attendants. Genet Mol Res 5:45–54

    Google Scholar 

  • Boncler M, Różalski M, Krajewska U, Podsędek A, Watala C (2014) Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. J Pharmacol Toxicol Methods 6:9–16

    Article  Google Scholar 

  • Chadwick D, Everard C, McDonnell K (2012) optimising point source CO2 mitigation by microalgae using near-infrared spectroscopy. Biosyst Eng Res Rev 17:139

    Google Scholar 

  • Collins DA, Yakacki CM, Lightbody D, Patel RR, Frick CP (2016) Shape-memory behavior of high-strength amorphous thermoplastic poly (para-phenylene). J Appl Polym Sci 133:3

    Article  Google Scholar 

  • de Lima R, Fraceto LF (2014) Genetic studies on the effects of nanomaterials. Nanotoxicology. Springer, New York, pp 177–199

    Chapter  Google Scholar 

  • Duerig TW, Melton KN, Stöckel D (2013) Engineering aspects of shape memory alloys. Butterworth-Heinemann

    Google Scholar 

  • Focarete ML, Gualandi C (2016) Cell delivery for regenerative medicine by using bioresorbable. Bioresorbable Polym Biomed Appl: From Fundam Transl Med 365

    Google Scholar 

  • Gonzalo S, Rodea-Palomares I, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2015) First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: a linkage with toxicity and oxidative stress. Nanotoxicology 9:706–718

    Google Scholar 

  • Govindarajan T, Shandas R (2014) A survey of surface modification techniques for next-generation shape memory polymer stent devices. Polymers 6:2309–2331

    Article  Google Scholar 

  • Gunes IS, Jana SC (2008) Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials. J Nanosci Nanotechnol 8:1616–1637

    Article  Google Scholar 

  • He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Controlled Release 127:189–207

    Article  Google Scholar 

  • Hearon K, Gall K, Ware T, Maitland DJ, Bearinger JP Wilson TS (2011) Post‐polymerization crosslinked polyurethane shape memory polymers. J Appl Polym Sci 121:144–153

    Google Scholar 

  • Hearon K, Smith SE, Maher CA, Wilson TS, Maitland DJ (2013) The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers. Radiat Phys Chem 83:111–121

    Article  Google Scholar 

  • https://www.flickr.com/photos/llnl/2845621541/in/photostream/

  • Hu J, Yang Z, Yeung L, Ji F, Liu Y (2005) Crosslinked polyurethanes with shape memory properties. Polym Int 54:854–859

    Article  Google Scholar 

  • Kausar A (2016) Physical properties and shape memory behavior of thermoplastic polyurethane/poly (ethylene-alt-maleic anhydride) blends and graphene nanoplatelet composite. Iran Polym J 25:945–955

    Article  Google Scholar 

  • Kavanagh K, Flynn DM, Nelson C, Zhang L, Wagner JD (2011) Characterization and validation of a streptozotocin-induced diabetes model in the vervet monkey. J Pharmacol Toxicol Methods 63:296–303

    Article  Google Scholar 

  • Khan MI, Pequegnat A, Zhou YN (2013) Multiple memory shape memory alloys. Adv Eng Mater 15:386–393

    Google Scholar 

  • Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415

    Article  Google Scholar 

  • Kuźma Ł, Wysokińska H, Różalski M, Krajewska U, Kisiel W (2012) An unusual taxodione derivative from hairy roots of Salvia austriaca. Fitoterapia 83:770–773

    Article  Google Scholar 

  • Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo (ɛ-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci 98:842–847

    Google Scholar 

  • Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379

    Article  Google Scholar 

  • Li J, Lewis CL, Chen DL, Anthamatten M (2011) Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 44:5336–5343

    Article  Google Scholar 

  • Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23:023001

    Article  Google Scholar 

  • Lu W, Le X, Zhang J, Huang Y, Chen T (2017) Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem Soc Rev 46(5):1284–1294

    Article  Google Scholar 

  • Lv H, Leng J, Liu Y, Du S (2008) Shape-memory polymer in response to solution. Adv Eng Mater 10:592–595

    Article  Google Scholar 

  • Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10:4033–4065

    Article  Google Scholar 

  • Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40:1661–1672

    Article  Google Scholar 

  • Meng H, Li G (2013) Reversible switching transitions of stimuli-responsive shape changing polymers. J Mater Chem A 1:7838–7865

    Article  Google Scholar 

  • Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA (2006) Hemocompatibility evaluation of poly (glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 27:4315–4324

    Article  Google Scholar 

  • Ortega JM, Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2007) A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE Trans Biomed Eng 54:1722–1724

    Article  Google Scholar 

  • Pan M, Yuan QJ, Gong XL, Zhang S, Li BJ (2016) A Tri-stimuli-responsive shape-memory material using host-guest interactions as molecular switches. Macromol Rapid Commun 37:433–438

    Article  Google Scholar 

  • Park H, Harrison P, Guo Z, Lee MG, Yu WR (2016) Three-dimensional constitutive model for shape memory polymers using multiplicative decomposition of the deformation gradient and shape memory strains. Mech Mater 93:43–62

    Article  Google Scholar 

  • Perkins J (2012) Shape memory effects in alloys. Springer Science & Business Media

    Google Scholar 

  • Ryou M, Cantillon-Murphy P, Azagury D, Shaikh SN, Ha G, Greenwalt I, Ryan MB, Lang JH, Thompson, CC (2011) Smart self-assembling magnets for endoscopy (SAMSEN) for transoral endoscopic creation of immediate gastrojejunostomy (with video). Gastrointest Endosc 73.353–359

    Google Scholar 

  • Safranski DL, Smith KE, Gall K (2013) Mechanical requirements of shape-memory polymers in biomedical devices. Polym Rev 53:76–91

    Article  Google Scholar 

  • Serrano MC, Carbajal L, Ameer GA (2011) Novel biodegradable shape-memory elastomers with drug-releasing capabilities. Adv Mater 23:2211–2215

    Article  Google Scholar 

  • Shah K, Maghsoudlou P (2016) Enzyme-linked immunosorbent assay (ELISA): the basics. Br J Hosp Med (London, England: 2005) 77:C98–101

    Google Scholar 

  • Shojaei A, Li G (2013) Viscoplasticity analysis of semicrystalline polymers: a multiscale approach within micromechanics framework. Int J Plast 42:31–49

    Article  Google Scholar 

  • Sokolowski W (2010) Shape memory polymer foams for biomedical devices. Open Med Devices J 2:20–23

    Article  Google Scholar 

  • Tanzi MC, De Nardo L, Bertoldi S, Fare S (2015) Invasive surgical procedures. Shape Mem Polym Biomed Appl: 133

    Google Scholar 

  • Tanzi MC, De Nardo L, Bertoldi S, Fare S (2015) invasive surgical procedures. Shape Mem Polym Biomed Appl 133–156

    Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  Google Scholar 

  • Turan D, Gunes G, SenihaGüner F (2016) Synthesis, characterization and O2 permeability of shape memory polyurethane films for fresh produce packaging. Packag Technol Sci 29:415–427

    Article  Google Scholar 

  • Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B: Polym Phys 49:832–864

    Article  Google Scholar 

  • Wang L, Yang X, Chen H, Gong T, Li W, Yang G, Zhou S (2013) Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl Mater Interfaces 5:10520–10528

    Article  Google Scholar 

  • Wang Y, Tian W, Xie J, Liu Y (2016) Thermoelectric responsive shape memory graphene/hydro-epoxy composites for actuators. Micromachines 7:145

    Article  Google Scholar 

  • Wang K, Strandman S, Zhu XX (2017) A mini review: shape memory polymers for biomedical applications. Front Chem Sci Eng:1–11

    Google Scholar 

  • Ware T, Voit W, Gall K (2010) Effects of sensitizer length on radiation crosslinked shape–memory polymers. Radiat Phys Chem 79:446–453

    Article  Google Scholar 

  • Wei Q, Mukaida M, Kirihara K, Ishida T (2014) Experimental studies on the anisotropic thermoelectric properties of conducting polymer films. ACS Macro Lett 3:948–952

    Article  Google Scholar 

  • Westbrook KK, Mather PT, Parakh V, Dunn ML, Ge Q, Lee BM, Qi HJ (2011) Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater Struct 20:065010

    Article  Google Scholar 

  • Wu G, Huang C, Li H, Ke Y, Fang GY, He JZ, Wang SH Chunlin D (2014) Controlling the biological activity and mechanical properties of sol–gel synthesized PEG–CaO–SiO2–P2O5 hybrid materials for bone tissue engineering. J Biomater Tissue Eng 4:1047–1053

    Google Scholar 

  • Xu J, Song J (2010) High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci 107:7652–7657

    Article  Google Scholar 

  • Yakacki CM, Nguyen TD, Likos R, Lamell R, Guigou D, Gall K (2011) Impact of shape-memory programming on mechanically-driven recovery in polymers. Polymer 52:4947–4954

    Article  Google Scholar 

  • Yu Z, Liu Y, Fan M, Meng X, Li B, Zhang S (2010) Effects of solvent, casting temperature, and guest/host stoichiometries on the properties of shape memory material based on partial α-CD-PEG inclusion complex. J Polym Sci Part B: Polym Phys 48:951–957

    Article  Google Scholar 

  • Yu K, Zhang Z, Liu Y, Leng J (2011) Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity. Appl Phys Lett 98:074102

    Article  Google Scholar 

  • Zhang X, Zhou Q, Liu H, Liu H (2014) UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers. Soft Matter 10:3748–3754

    Article  Google Scholar 

  • Zhang F, Zhang Z, Zhou T, Liu Y, Leng J (2015) Shape memory polymer nanofibers and their composites: electrospinning, structure, performance, and applications. Front Mater 2:62

    Google Scholar 

  • Zhou HY, Zhang YP, Zhang WF, Chen XG (2011) Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohyd Polym 83:1643–1651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Basheer Ahamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muzaffar, A., Deshmukh, K., Basheer Ahamed, M., Khadheer Pasha, S.K. (2019). Shape Memory Polymer Composites in Biomedical Field. In: Sadasivuni, K., Ponnamma, D., Rajan, M., Ahmed, B., Al-Maadeed, M. (eds) Polymer Nanocomposites in Biomedical Engineering . Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04741-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04741-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04740-5

  • Online ISBN: 978-3-030-04741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics