Skip to main content

Mathematical Models of Multilayer Flexible Orthotropic Shells Under a Temperature Field

  • Chapter
  • First Online:
Mathematical Models of Higher Orders

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 42))

  • 567 Accesses

Abstract

In this chapter we present methods and algorithms for the numerical investigation of shell stability “in the large” of the following multilayer mathematical models: the Timoshenko second order of approximation (Volmir, Flexible plates and shells, Defense Technical Information Center, Gainesville, 1967, [1]), the Sheremetev–Pelekh–Reddy–Levinson third order of approximation (Levinson, J Sound Vib, 74:81–87, 1981, [2]; Reddy, J Appl Mech, 51:745–752, 1984, [3]; Sheremetev, Pelekh, Eng J 4(3):504–510, 1964, [4]), the Grigolyuk–Kulikov model (Grigolyuk, Kulikov, Multilayer reinforced shells: calculation of pneumatic tyres, Mashinostroenie, Moscow, 1988, [5]), and their modifications. We also construct novel mathematical models including a modified asymptotically compatible model obtained with the help of a stationary variant of the “projectional conditions” of the shell’s motion and a model with \(\varepsilon \)-regularization. In the latter case, a theorem on the existence of a general solution is formulated and proved. First a comparative analysis of the computational results in the framework of our mathematical models focused on stability estimation “in the large” of shallow multilayer orthotropic shells within the models and the Kirchhoff–Love first-order approximation model has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volmir, A. S. (1967). Flexible Plates and Shells. Gainesville: Defense Technical Information Center.

    Google Scholar 

  2. Levinson, M. (1981). A new rectangular beam theory. Journal of Sound and Vibration, 74, 81–87.

    Article  Google Scholar 

  3. Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, 51, 745–752.

    Article  Google Scholar 

  4. Sheremetev, M. P., & Pelekh, B. L. (1964). On construction of improved theory of plates. Engineering Journal, 4(3), 504–510 (in Russian).

    Google Scholar 

  5. Grigolyuk, E. I., & Kulikov, G. M. (1988). Multilayer Reinforced Shells: Calculation of Pneumatic Tyres. Moscow: Mashinostroenie (in Russian).

    Google Scholar 

  6. Piskunov, V. G., Verijenko, V. E., & Prysyazhnyuk, V. K. (1987). Calculation of Inhomogeneous Shallow Shells and Plates by the Finite Element Method. Kiev: Vyscha SHKOLA (in Russian).

    Google Scholar 

  7. Awrejcewicz, J., Krysko, A. V., Kutepov, I., Zagniboroda, N., Zhigalov, M., & Krysko, V. A. (2013). Analysis of chaotic vibrations of flexible plates using Fast Fourier Transforms and wavelets. International Journal of Structural Stability and Dynamics, 13(7), 1340005-1–1340004-12.

    Google Scholar 

  8. Awrejcewicz, J., Krysko, V. A., Papkova, I. V., Yakovleva, T. V., Zagniboroda, N. A., Zhigalov, M. V. et al. (2014). Application of the Lyapunov exponents and wavelets to study and control of plates and shells. In J. Awrejcewicz (Ed.), Computational and Numerical Simulations (pp. 1–19). InTech.

    Chapter  Google Scholar 

  9. Awrejcewicz, J., Krysko, A. V., Zhigalov, M. V., Saltykova, O. A., & Krysko, V. A. (2008). Chaotic vibrations in flexible multilayered Bernoulli–Euler and Timoshenko type beams. Latin American Jourmal of Solids and Structures, 5(4), 319–363.

    Google Scholar 

  10. Nowacki, W. (1970). Theory of Micropolar Elasticity. New York: Springer.

    Book  Google Scholar 

  11. Rodionov, V. A. (1983). The Theory of Thin Anisotropic Shells Accounting for Transverse Shear and Compression. Leningrad: Publishing House Leningrad University (in Russian).

    Google Scholar 

  12. Ambartsumyan, S. A. (1990). Fragments of the Theory of Anisotropic Shells. Singapore: World Scientific.

    Book  Google Scholar 

  13. Washizu, K. (1968). Variational Methods in Elasticity and Plasticity. Pergamon Press.

    Google Scholar 

  14. Volmir, A. S. (1972). The Nonlinear Dynamics of Plates and Shells. Moscow: Nauka (in Russian).

    Google Scholar 

  15. Pikul, V. V. (1982). Theory and Analysis of Shells of Revolution. Moscow: Nauka (in Russian).

    Google Scholar 

  16. Rasskazov, A. O., Sokolov, I. I., & Shul’ga, N. A. (1986). Theory and Calculation of Layered Orthotropic Plates and Shells. Kiev: Vishcha Shkola (in Russian).

    Google Scholar 

  17. Kirichenko, V.F., Bochkarev, V.V. (1989). Related problem of thermoelasticity for shallow shells within the framework of the generalized Timoshenko model. Saratov DEP. in VINITI, 6939-B89.

    Google Scholar 

  18. Lions, J.-L. (1969). Some Problems of Solving Non-Linear Boundary Value Problems. Paris: Dunod–Gauthier-Villars.

    Google Scholar 

  19. Mikhlin, S. G. (1970). Variational Methods in Mathematical Physics. Oxford: Pergamon Press.

    MATH  Google Scholar 

  20. Ladyzhenskaya, O. A. (1973). The Boundary Value Problems of Mathematical Physics. Berlin: Springer.

    Google Scholar 

  21. Kachurovskii, R. I. (1971). Nonlinear problems in the theory of plates and shells and their grid ap-proximation. Siberian Mathematical Journal, 12(2), 353–366 (in Russian).

    Google Scholar 

  22. Vorovich, I. I. (1999). Nonlinear Theory of Shallow Shells. New York: Springer.

    MATH  Google Scholar 

  23. Volmir, A. S. (1967). Stability of Deformable Systems. Moscow: Nauka (in Russian).

    Google Scholar 

  24. Samarskiy, A. A. (2001). Theory of Difference Schemes. New York: Marcel Dekker Inc.

    Book  Google Scholar 

  25. Brucker, L. E. (1965). Some simplifications of the equations of bending of sandwich plates. Calculations of Elements of Aircraft Structures, 3, 74–99 (in Russian).

    Google Scholar 

  26. Krysko, V. A. (1976). Nonlinear Statics and Dynamics of Inhomogeneous Membranes. Saratov: Publishing House Saratov University Press (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Awrejcewicz .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krysko, V.A., Awrejcewicz, J., Zhigalov, M.V., Kirichenko, V.F., Krysko, A.V. (2019). Mathematical Models of Multilayer Flexible Orthotropic Shells Under a Temperature Field. In: Mathematical Models of Higher Orders. Advances in Mechanics and Mathematics, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-04714-6_6

Download citation

Publish with us

Policies and ethics