Nonclassical Models and Stability of Multilayer Orthotropic Thermoplastic Shells within Timoshenko Modified Hypotheses

  • Vadim A. Krysko
  • Jan AwrejcewiczEmail author
  • Maxim V. Zhigalov
  • Valeriy F. Kirichenko
  • Anton V. Krysko
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 42)


This chapter focuses on the following investigations: development of the methodology of construction (based on kinematic and static hypotheses) and improved mathematical models for the design of nonlinear shells and plates interacting with temperature fields; validation of the reliability of boundary value problems formulated within the framework of the constructed models and definition of conditions of motion and equilibrium configurations of shells; numerical investigation of the static stability of multilayer orthotropic shells within computationally improved models.


  1. 1.
    Vorovich, I. I. (1999). Nonlinear theory of shallow shells. New York: Springer.zbMATHGoogle Scholar
  2. 2.
    Sedov, L. I. (1971). A course in continuum mechanics. Wolters-Noordhoff Publishing.Google Scholar
  3. 3.
    Banichuk, N. V., Ivanov, S Yu., & Sharaniuk, A. V. (1989). Dynamics of construction analysis and optimization. Moscow (in Russian): Nauka.Google Scholar
  4. 4.
    Karnaukhov, V. G. (1982). Coupled problems of thermoelasticity. Kiev (in Russian): Naukova Dumka.Google Scholar
  5. 5.
    Smirnov, A. L., & Tovstik, P. E. (2001). Asymptotic methods in the buckling theory of thin shells. Singapore: World Scientific.zbMATHGoogle Scholar
  6. 6.
    Grigolyuk, E. I., & Kulikov, G. M. (1988). Multilayer reinforced shells: Calculation of pneumatic tyres. Moscow (in Russian): Mashinostroenie.Google Scholar
  7. 7.
    Nowacki, W. (1970). Theory of micropolar elasticity. New York: Springer.CrossRefGoogle Scholar
  8. 8.
    Kozdoba, L. A. (1975). Methods for solving nonlinear heat condition problems. Moscow (in Russian): Nauka.Google Scholar
  9. 9.
    Mikhailov, V. P. (1983). Partial differential equations. Moscow (in Russian): Science.Google Scholar
  10. 10.
    Ladyzhenskaya, O. A. (1973). The boundary value problems of mathematical physics. Berlin: Springer.Google Scholar
  11. 11.
    Sheremetev, M. P., & Pelekh, B. L. (1964). On construction of improved theory of plates. Engineering Journal, 4(3), 504–510. (in Russian).Google Scholar
  12. 12.
    Garmati, I. (1970). Non-equilibrium thermodynamics. Field theory and variational principles. Berlin: Springer.CrossRefGoogle Scholar
  13. 13.
    Berdichevsky, V. L. (2009). Variational principles of continuum mechanics. Berlin: Springer.zbMATHGoogle Scholar
  14. 14.
    Bolotin, V. V., & Novichkov, Yu N. (1980). Mechanics of multilayer structures. Moscow (in Russian): Mashinostroenie.Google Scholar
  15. 15.
    Nowacki, W. (1975). Dynamic problems of thermoelasticity. Berlin: Springer.zbMATHGoogle Scholar
  16. 16.
    Trenogin, V. A. (1980). Functional analysis. Moscow (in Russian): Science.zbMATHGoogle Scholar
  17. 17.
    Mikhlin, S. G. (1970). Variational methods in mathematical physics. Oxford: Pergamon Press.zbMATHGoogle Scholar
  18. 18.
    Volmir, A. S. (1972). The nonlinear dynamics of plates and shells. Moscow (in Russian): Nauka.Google Scholar
  19. 19.
    Podstrigatch, Ya. S., Koliano, Yu. M. (1976). Generalized thermomechanics. Kiev (in Russian): Naukova Dumka.Google Scholar
  20. 20.
    Lions, J.-L. (1969). Some problems of solving non-linear boundary value problems. Paris: Dunod-Gauthier-Villars.Google Scholar
  21. 21.
    Morozov, N. F. (1978). Selected two-dimensional problems of theory of elasticity. Leningrad (in Russian): LGU.Google Scholar
  22. 22.
    Petrovsky, I. G. (1992). Lectures of partial differential equations. New York: Dover.Google Scholar
  23. 23.
    Godoy, L. A. (2016). Buckling of vertical oil storage steel tanks: Review of static buckling studies. Thin-Walled Structures, 103, 1–21.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vadim A. Krysko
    • 1
  • Jan Awrejcewicz
    • 2
    Email author
  • Maxim V. Zhigalov
    • 1
  • Valeriy F. Kirichenko
    • 1
  • Anton V. Krysko
    • 3
  1. 1.Department of Mathematics and ModelingSaratov State Technical UniversitySaratovRussia
  2. 2.Department of Automation, Biomechanics and MechatronicsLodz University of TechnologyLodzPoland
  3. 3.Department of Applied Mathematics and Systems AnalysisSaratov State Technical UniversitySaratovRussia

Personalised recommendations