Skip to main content

Elements of Clinical Training with the Electrolarynx

  • Chapter
  • First Online:
Clinical Care and Rehabilitation in Head and Neck Cancer

Abstract

The electromechanical device commonly known as an electrolarynx (EL) is a popular primary or backup mode of postlaryngectomy alaryngeal communication. Learning to efficiently and successfully use an EL requires the acquisition of several skills, including (1) appropriate placement of the device, (2) control of voice activation, (3) over-articulation and modulation of speech rate, and (4) awareness of paralinguistic behaviors. Mastering such skills can increase comprehensibility and, in turn, the potential for communicative success with the EL. Design features vary among commercially available devices, mostly in the type and degree of pitch modulation they offer. To optimize the ability of newer devices to modulate pitch, users may need specific practice directed toward enhancement of the suprasegmental aspects of their EL speech. This chapter addresses reviews of current EL features and outlines how speech-language pathologists (SLP) can provide valuable training and insight for laryngectomees seeking to use this popular method of postlaryngectomy communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The HandsFree™ Electrolarynx Holder (Griffin Labs, Temecula, CA) is worn around the neck and activated with a chin press; it is not appropriate for all users, however, as optimal use may occur only within a specific and limited area of the user’s neck space.

  2. 2.

    There are videos online (e.g., https://www.youtube.com/watch?v=iV3rP%2D%2DrcTA) that demonstrate this process.

References

  • Al-Zanoon, N., Parsa, V., Lin, X., & Doyle, P.C. (2017, November). Using visual feedback to enhance intonation control of electrolarynx speakers. Paper presented at the Annual Convention of the American Speech-Language-Hearing Association, Los Angeles, CA.

    Google Scholar 

  • Baken, R., & Orlikoff, R. (2000). Clinical measurement of speech and voice (2nd ed.). San Diego, CA: Singular Pub. Group.

    Google Scholar 

  • Barney, H. L. (1958). A discussion of some technical aspects of speech aids for post-laryngectomized patients. The Annals of Otology, Rhinology, and Laryngology, 67(2), 558–570.

    Article  CAS  Google Scholar 

  • Bennett, S., & Weinberg, B. (1973). Acceptability ratings of normal, esophageal, and artificial larynx speech. Journal of Speech and Hearing Research, 16, 608–615.

    Article  CAS  Google Scholar 

  • Bien, S., Rinaldo, A., Silver, C. E., Fagan, J., Pratt, L., Tarnowska, C., … Ferlito, A. (2008). History of voice rehabilitation following laryngectomy. The Laryngoscope, 118(3), 453–458. https://doi.org/10.1097/MLG.0b013e31815db4a2

    Article  PubMed  Google Scholar 

  • Blom, E. C. (2000). Current status of voice restoration following total laryngectomy...including commentary by Shah, J.P. Oncology (08909091), 14(6), 915–931.

    CAS  Google Scholar 

  • Brown, D. H., Hilgers, F. J. M., Irish, J. C., & Balm, A. J. M. (2003). Postlaryngectomy voice rehabilitation: State of the art at the millennium. World Journal of Surgery, 27(7), 824–831. https://doi.org/10.1007/s00268-003-7107-4

    Article  PubMed  Google Scholar 

  • Bunton, K., Kent, R. D., Kent, J. F., & Duffy, J. R. (2001). The effects of flattening fundamental frequency contours on sentence intelligibility in speakers with dysarthria. Clinical Linguistics & Phonetics, 15(3), 181–193.

    Article  Google Scholar 

  • Cox, S. R. (2016). The application of clear speech in electrolaryngeal speakers (Dissertation). The University of Western Ontario, London, Ontario.

    Google Scholar 

  • Cox, S. R., Theurer, J., Spaulding, S., & Doyle, P. C. (2015). The multidimensional impact of total laryngectomy on women. Journal of Communication Disorders, 56, 59–75. https://doi.org/10.1016/j.jcomdis.2015.06.008

    Article  PubMed  Google Scholar 

  • Doyle, P. C. (1994). Foundations of voice and speech rehabilitation following laryngeal cancer. San Diego, CA: Singular Pub. Group.

    Google Scholar 

  • Doyle, P. C. (2005). Clinical procedures for training use of the electronic artificial larynx. InContemporary considerations in the treatment and rehabilitation of head and neck Cancer (pp. 545–570). Austin, TX: Pro-Ed.

    Google Scholar 

  • Doyle, P. C. (2008). Conveyance of emotion in postlaryngectomy communication. In K. Izdebski (Ed.), Emotions in the Human Voice, Volume II: Clinical Evidence (Vol. 2, pp. 49–67). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Doyle, P. C. (2012). Seeking to better understand factors that influence postlaryngectomy speech rehabilitation. Perspectives on Voice and Voice Disorders, 22(1), 45–51. https://doi.org/10.1044/vvd22.1.45

    Article  Google Scholar 

  • Doyle, P. C., & Eadie, T. L. (2005). The perceptual nature of alaryngeal voice and speech. InContemporary considerations in the treatment and rehabilitation of head and neck cancer: Voice, speech, and swallowing (pp. 113–140). Austin, TX: Pro-Ed.

    Google Scholar 

  • Eadie, T. L., & Doyle, P. C. (2002). Direct magnitude estimation and interval scaling of naturalness and severity in tracheoesophageal (TE) speakers. Journal of Speech, Language, and Hearing Research, 45(6), 1088–1096. https://doi.org/10.1044/1092-4388(2002/087

    Article  PubMed  Google Scholar 

  • Eadie, T. L., & Doyle, P. C. (2005). Scaling of voice pleasantness and acceptability in tracheoesophageal speakers. Journal of Voice, 19(3), 373–383. https://doi.org/S0892-1997(04)00071-2 [pii]. https://doi.org/10.1016/j.jvoice.2004.04.004

    Article  PubMed  Google Scholar 

  • Eadie, T. L., Otero, D., Cox, S., Johnson, J., Baylor, C. R., Yorkston, K. M., & Doyle, P. C. (2016). The relationship between communicative participation and postlaryngectomy speech outcomes. Head & Neck, 38(Suppl 1), E1955–E1961. https://doi.org/10.1002/hed.24353

    Article  Google Scholar 

  • Espy-Wilson, C. Y., Chari, V. R., MacAuslan, J. M., Huang, C. B., & Walsh, M. J. (1998). Enhancement of electrolaryngeal speech by adaptive filtering. Journal of Speech, Language & Hearing Research, 41(6), 1253–1264.

    Article  CAS  Google Scholar 

  • Gandour, J., & Weinberg, B. (1983). Perception of intonational contrasts in alaryngeal speech. Journal of Speech and Hearing Research, 26, 142–148.

    Article  CAS  Google Scholar 

  • Gandour, J., & Weinberg, B. (1984). Production of intonation and contrastive stress in electrolaryngeal speech. Journal of Speech and Hearing Research, 27, 605–612.

    Article  CAS  Google Scholar 

  • Gandour, J., Weinberg, B., & Garzione, B. (1983). Perception of lexical stress in alaryngeal speech. Journal of Speech and Hearing Research, 26, 418–424.

    Article  CAS  Google Scholar 

  • Gelfer, M. P., & Bennett, Q. E. (2013). Speaking fundamental frequency and vowel formant frequencies: effects on perception of gender. Journal of Voice, 27(5), 556–566. https://doi.org/10.1016/j.jvoice.2012.11.008.

  • Globlek, D., Štajner-Katušić, S., Mušura, M., Horga, D., & Liker, M. (2004). Comparison of alaryngeal voice and speech. Logopedics Phoniatrics Vocology, 29(2), 87–91.

    Article  CAS  Google Scholar 

  • Goy, H., Fernandes, D. N., Pichora-Fuller, M. K., & van Lieshout, P. (2013). Normative voice data for younger and older adults. Journal of Voice: Official Journal of the Voice Foundation, 27(5), 545–555. https://doi.org/10.1016/j.jvoice.2013.03.002

    Article  Google Scholar 

  • Graham, M. S. (2006). Strategies for excelling with alaryngeal speech methods. SIG 3 Perspectives on Voice and Voice Disorders, 16(2), 25–32. https://doi.org/10.1044/vvd16.2.25

    Article  Google Scholar 

  • Guo, L., Nagle, K. F., & Heaton, J. T. (2016). Generating tonal distinctions in Mandarin Chinese using an electrolarynx with preprogrammed tone patterns. Speech Communication, 78, 34–41. https://doi.org/10.1016/j.specom.2016.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Heaton, J. T., Robertson, M., & Griffin, C. (2011). Development of a wireless electromyographically controlled electrolarynx voice prosthesis. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 5352–5355).

    Google Scholar 

  • Hillman, R. E., Walsh, M. J., Wolf, G. T., Fisher, S. G., & Hong, W. K. (1998). Functional outcomes following treatment for advanced laryngeal cancer. Part I – voice preservation in advanced laryngeal cancer. Part II – laryngectomy rehabilitation: The state of the art in the VA system. Research speech-language pathologists. Department of Veterans Affairs Laryngeal Cancer Study Group. Annals of Otology, Rhinology & Laryngology, Supplement, 172, 1–27.

    CAS  Google Scholar 

  • Koike, M., Kobayashi, N., Hirose, H., & Hara, Y. (2002). Speech rehabilitation after total laryngectomy. Acta Oto-Laryngologica, 122(4), 107–112. https://doi.org/10.1080/000164802760057716

    Article  Google Scholar 

  • Krause, J. C., & Braida, L. D. (2003). Investigating alternative forms of clear speech: The effects of speaking rate and speaking mode on intelligibility. Journal of the Acoustical Society of America, 112(5), 2165–2172. https://doi.org/10.1121/1.1509432

    Article  Google Scholar 

  • Law, I., Ma, E. P.-M., & Yiu, E. M.-L. (2009). Speech intelligibility, acceptability, and communication-related quality of life in Chinese alaryngeal speakers. Archives of Otolaryngology - Head and Neck Surgery, 135(7), 704–711.

    Article  Google Scholar 

  • Matsui, K., Kimura, K., Nakatoh, Y., & Kato, Y. (2013). Development of electrolarynx with hands-free prosody control. InProceedings of the 8th ISCA Speech Synthesis Workshop (pp. 273–278). Barcelona, Spain: International Speech Communication Association.

    Google Scholar 

  • Meltzner, G. S., & Hillman, R. E. (2005). Impact of aberrant acoustic properties on the perception of sound quality in electrolarynx speech. Journal of Speech, Language & Hearing Research, 48(4), 766–779.

    Article  Google Scholar 

  • Meltzner, G. S., Hillman, R. E., Heaton, J. T., Houston, K. M., Kobler, J. B., & Qi, Y. (2005). Electrolaryngeal speech: The state of the art and future directions for development. InContemporary considerations in the treatment and rehabilitation of head and neck cancer: Voice, speech, and swallowing (pp. 571–590). Austin, TX: Pro-Ed.

    Google Scholar 

  • Mendenhall, W. M., Morris, C. G., Stringer, S. P., Amdur, R. J., Hinerman, R. W., Villaret, D. B., & Robbins, K. T. (2002). Voice rehabilitation after total laryngectomy and postoperative radiation therapy. Journal of Clinical Oncology, 20(10), 2500–2505. https://doi.org/10.1200/JCO.2002.07.047

    Article  PubMed  Google Scholar 

  • Most, T., Tobin, Y., & Mimran, R. C. (2000). Acoustic and perceptual characteristics of esophageal and tracheoesophageal speech production. Journal of Communication Disorders, 33(2), 165–181. https://doi.org/10.1016/S0021-9924(99)00030-1

    Article  CAS  PubMed  Google Scholar 

  • Nagle, K., & Heaton, J. (2016). Perceived naturalness of electrolaryngeal speech produced using sEMG controlled vs. manual pitch modulation. In Proceedings of the 17th Annual Conference of the International Speech Communication Association (pp. 238–242). San Francisco, CA. https://doi.org/10.21437/Interspeech.2016-1476

  • Nagle, K. F., Eadie, T. L., Wright, D. R., & Sumida, Y. A. (2012). Effect of fundamental frequency on judgments of electrolaryngeal speech. American Journal of Speech-Language Pathology, 21(2), 154–166. https://doi.org/10.1044/1058-0360(2012/11-0050

    Article  PubMed  Google Scholar 

  • Nagle, K. F., & Heaton, J. T. (2017). Comparison of thumb-pressure vs. electromyographic modes of frequency modulation for electrolaryngeal speech. Poster presented at the 173rd Meeting of the Acoustical Society of America, Boston.

    Google Scholar 

  • Nakamura, K., Toda, T., Saruwatari, H., & Shikano, K. (2012). Speaking-aid systems using GMM-based voice conversion for electrolaryngeal speech. Speech Communication, 54, 134–146. https://doi.org/10.1016/j.specom.2011.07.007

    Article  Google Scholar 

  • Nelson, I., Parkin, J. L., & Potter, J. F. (1975). The modified Tokyo larynx: An improved pneumatic speech aid. Archives of Otolaryngology, 101(2), 107–108. https://doi.org/10.1001/archotol.1975.00780310029008

    Article  CAS  PubMed  Google Scholar 

  • Pepiot, E. (2014). Male and female speech: A study of mean f0, f0 range, phonation type and speech rate in Parisian French and American English speakers. In Speech Prosody 2014 (pp. 305–309). Dublin, Ireland. https://doi.org/<halshs-00999332>

  • Peterson, G. E., & Lehiste, I. (1960). Duration of syllable nuclei in English. J Acoust Soc Am, 32, 693–703. https://doi.org/10.1121/1.1908183

    Article  Google Scholar 

  • Pindzola, R., & Cain, B. (1988). Acceptability ratings of tracheoesophageal speech. Laryngoscope, 98(4), 394–397.

    Article  Google Scholar 

  • Qi, Y. Y., & Weinberg, B. (1991). Low-frequency energy deficit in electrolaryngeal speech. Journal of Speech & Hearing Research, 34(6), 1250–1256.

    Article  CAS  Google Scholar 

  • Robbins, J., Fisher, H. B., Blom, E. C., & Singer, M. I. (1984). Acoustic differentiation of laryngeal, esophageal, and tracheoesophageal speech. Journal of Speech & Hearing Research, 27(4), 577–585.

    Article  CAS  Google Scholar 

  • Searl, J. (2006). Technological advances in alaryngeal speech rehabilitation. SIG 3 Perspectives on Voice and Voice Disorders, 16(July), 12–18. https://doi.org/10.1044/vvd16.2.12

    Article  Google Scholar 

  • Singer, M. I., & Blom, E. D. (1980). An endoscopic technique for restoration of voice after laryngectomy. Annals of Otology, Rhinology & Laryngology, 89(6), 529–533. https://doi.org/10.1177/000348948008900608

    Article  CAS  Google Scholar 

  • Singer, S., Wollbrück, D., Dietz, A., Schock, J., Pabst, F., Vogel, H.-J., … Meuret, S. (2013). Speech rehabilitation during the first year after total laryngectomy. Head & Neck, 35(11), 1583–1590. https://doi.org/10.1002/hed.23183

    Article  Google Scholar 

  • Smiljanić, R., & Bradlow, A. R. (2009). Speaking and hearing clearly: Talker and listener factors in speaking style changes. Language and Linguistics Compass, 3(1), 236–264. https://doi.org/10.1111/j.1749-818X.2008.00112.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Smithwick, L., Davis, P., Dancer, J., Hicks, G., & Montague, J. (2002). Female laryngectomees’ satisfaction with communication methods and speech-language pathology services. Perceptual and Motor Skills, 94(1), 204–206.

    Article  Google Scholar 

  • Štajner-Katušić, S., Horga, D., Mušura, M., & Globlek, D. (2006). Voice and speech after laryngectomy. Clinical Linguistics & Phonetics, 20(2–3), 195–203. https://doi.org/10.1080/02699200400026975

    Article  Google Scholar 

  • Stepp, C. E., Heaton, J. T., Rolland, R. G., & Hillman, R. E. (2009). Neck and face surface electromyography for prosthetic voice control after total laryngectomy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(2), 146–155. https://doi.org/10.1109/TNSRE.2009.2017805

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi, H., Nakao, M., Kikuchi, Y., & Kaga, K. (2005). Alaryngeal speech aid using an intra-oral electrolarynx and a miniature fingertip switch. Auris, Nasus, Larynx, 32(2), 157–162. https://doi.org/10.1016/j.anl.2005.01.007

    Article  PubMed  Google Scholar 

  • Wan, C., Wu, L., Wu, H., Wang, S., & Wan, M. (2012). Assessment of a method for the automatic on/off control of an electrolarynx via lip deformation. Journal of Voice, 26(5), 674.e21–674.e30. https://doi.org/10.1016/j.jvoice.2012.03.002

    Article  Google Scholar 

  • Ward, E. C., Koh, S. K., Frisby, J., & Hodge, R. (2003). Differential modes of alaryngeal communication and long-term voice outcomes following pharyngolaryngectomy and laryngectomy. Folia Phoniatrica et Logopaedica, 55(1), 39–49.

    Article  CAS  Google Scholar 

  • Watson, P. J., & Schlauch, R. S. (2008). The effect of fundamental frequency on the intelligibility of speech with flattened intonation contours. American Journal of Speech-Language Pathology, 17(4), 348–355. https://doi.org/10580360_2008_07-0048 [pii] 10.1044/1058-0360(2008/07-0048).

    Article  Google Scholar 

  • Watson, P. J., & Schlauch, R. S. (2009). Fundamental frequency variation with an electrolarynx improves speech understanding: A case study. American Journal of Speech-Language Pathology, 18(2), 162–167.

    Article  Google Scholar 

  • Weinberg, B., & Riekena, A. (1973). Speech produced with the Tokyo artificial larynx. Journal of Speech and Hearing Disorders, 38(3), 383–389.

    Article  CAS  Google Scholar 

  • Weiss, M. S., & Basili, A. G. (1985). Electrolaryngeal speech produced by laryngectomized subjects: Perceptual characteristics. Journal of Speech & Hearing Research, 28(2), 294–300.

    Article  CAS  Google Scholar 

  • Weiss, M. S., Yeni-Komshian, G. H., & Heinz, J. M. (1979). Acoustical and perceptual characteristics of speech produced with an electronic artificial larynx. The Journal of the Acoustical Society of America, 65(5), 1298–1308. https://doi.org/10.1121/1.382697

    Article  CAS  PubMed  Google Scholar 

  • Williams, S. E., & Watson, J. B. (1987). Speaking proficiency variations according to method of alaryngeal voicing. Laryngoscope, 97(6), 737-739.

    Google Scholar 

  • Wu, L., Wan, C., Wang, S., & Wan, M. (2013). Improvement of electrolaryngeal speech quality using a supraglottal voice source with compensation of vocal tract characteristics. IEEE Transactions on Biomedical Engineering, 60(7), 1965–1974. https://doi.org/10.1109/TBME.2013.2246789

    Article  PubMed  Google Scholar 

  • Wu, L., Wan, C., Xiao, K., Wang, S., & Wan, M. (2014). Evaluation of a method for vowel-specific voice source control of an electrolarynx using visual information. Speech Communication, 57, 39–49. https://doi.org/10.1016/j.specom.2013.09.006

    Article  Google Scholar 

  • Yorkston, K., Strand, E., & Kennedy, M. R. T. (1996). Comprehensibility of dysarthric speech: Implications for assessment and treatment planning. American Journal of Speech-Language Pathology, 5(1), 55–66.

    Article  Google Scholar 

  • Yorkston, K. M., Hammen, V. L., Beukelman, D. R., & Traynor, C. D. (1990). The effect of rate control on the intelligibility and naturalness of dysarthric speech. Journal of Speech and Hearing Disorders, 55(3), 550–560. https://doi.org/10.1044/jshd.5503.550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen F. Nagle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagle, K.F. (2019). Elements of Clinical Training with the Electrolarynx. In: Doyle, P. (eds) Clinical Care and Rehabilitation in Head and Neck Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-04702-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04702-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04701-6

  • Online ISBN: 978-3-030-04702-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics