Skip to main content

Efficient Process Variation Characterization by Virtual Probe

  • Chapter
  • First Online:
Book cover Machine Learning in VLSI Computer-Aided Design

Abstract

In this chapter, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods including two-dimensional interpolation, Kriging prediction, and k-LSE estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nassif, Delay variability: sources, impacts and trends, in IEEE International Solid-State Circuits Conference (2000), pp. 368–369

    Google Scholar 

  2. Semiconductor Industry Associate, 2007 International Technology Roadmap for Semiconductors (ITRS) (Semiconductor Industry Association, Washington, 2007)

    Google Scholar 

  3. H. Chang, S. Sapatnekar, Statistical timing analysis under spatial correlations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(9), 1467–1482 (2005)

    Article  Google Scholar 

  4. C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, S. Narayan, First-order incremental block-based statistical timing analysis, in Design Automation Conference (2004), pp. 331–336

    Google Scholar 

  5. Y. Zhan, A. Strojwas, X. Li, L. Pileggi, D. Newmark, M. Sharma, Correlation aware statistical timing analysis with non-Gaussian delay distributions, in Design Automation Conference (2005), pp. 77–82

    Google Scholar 

  6. K. Heloue, F. Najm, Statistical timing analysis with two-sided constraints, in International Conference on Computer-Aided Design (2005), pp. 829–836

    Google Scholar 

  7. M. Mani, A. Singh, M. Orshansky, Joint design-time and post-silicon minimization of parametric yield loss using adjustable robust optimization, in International Conference on Computer-Aided Design (2006), pp. 19–26

    Google Scholar 

  8. S. Kulkarni, D. Sylvester, D. Blaauw, A statistical framework for post-silicon tuning through body bias clustering, in International Conference on Computer-Aided Design (2006), pp. 39–46

    Google Scholar 

  9. Q. Liu, S. Sapatnekar, Synthesizing a representative critical path for post-silicon delay prediction, in IEEE International Symposium on Physical Design (2009), pp. 183–190

    Google Scholar 

  10. M. Ketchen, M. Bhushan, D. Pearson, High speed test structures for in-line process monitoring and model calibration, in IEEE International Conference on Microelectronic Test Structures (2005), pp. 33–38

    Google Scholar 

  11. M. Bhushan, A. Gattiker, M. Ketchen, K. Das, Ring oscillators for CMOS process tuning and variability control. IEEE Trans. Semicond. Manuf. 19(1), 10–18 (2006)

    Article  Google Scholar 

  12. W. Mann, F. Taber, P. Seitzer, J. Broz, The leading edge of production wafer probe test technology, in IEEE International Test Conference (2004), pp. 1168–1195

    Google Scholar 

  13. F. Koushanfar, P. Boufounos, D. Shamsi, Post-silicon timing characterization by compressed sensing, in International Conference on Computer-Aided Design (2008), pp. 185–189

    Google Scholar 

  14. S. Reda, S. Nassif, Analyzing the impact of process variations on parametric measurements: novel models and applications, in Design, Automation & Test in Europe (2009), pp. 375–380

    Google Scholar 

  15. M. Bushnell, V. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits (Kluwer Academic Publishers, Norwell, 2000)

    Google Scholar 

  16. A. Oppenheim, Signals and Systems (Prentice Hall, Upper Saddle River, 1996)

    Google Scholar 

  17. R. Gonzalez, R. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, 2007)

    Google Scholar 

  18. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  19. E. Candes, Compressive sampling, in International Congress of Mathematicians (2006)

    Google Scholar 

  20. J. Tropp, S. Wright, Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98(6), 948–958 (2010)

    Article  Google Scholar 

  21. D. Donoho, J. Tanner, Precise undersampling theorems. Proc. IEEE 98(6), 913–924 (2010)

    Article  Google Scholar 

  22. C. Bishop, Pattern Recognition and Machine Learning (Prentice Hall, Upper Saddle River, 2007)

    Google Scholar 

  23. W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  24. F. Liu, A general framework for spatial correlation modeling in VLSI design, in Design Automation Conference (2007), pp. 817–822

    Google Scholar 

  25. A. Nowroz, R. Cochran, S. Reda, Thermal monitoring of real processors: techniques for sensor allocation and full characterization, in Design Automation Conference (2010), pp. 56–61

    Google Scholar 

  26. R. Tibshirani, Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  27. G. Golub, C. Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  28. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  29. S. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-scale l 1-regularized least squares. IEEE J. Sel. Top. Sign. Proces. 1(4), 606–617 (2007)

    Article  Google Scholar 

  30. M. McKay, R. Beckman, W. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from computer code. Technometrics 42(1), 55–61 (1979)

    Article  MathSciNet  Google Scholar 

  31. X. Li, R. Rutenbar, R. Blanton, Virtual probe: a statistically optimal framework for minimum-cost silicon characterization of nanoscale integrated circuits, in International Conference on Computer-Aided Design (2009), pp. 433–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Tao , Xin Li or Xuan Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tao, J. et al. (2019). Efficient Process Variation Characterization by Virtual Probe. In: Elfadel, I., Boning, D., Li, X. (eds) Machine Learning in VLSI Computer-Aided Design. Springer, Cham. https://doi.org/10.1007/978-3-030-04666-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04666-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04665-1

  • Online ISBN: 978-3-030-04666-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics