Skip to main content

Learning from Limited Data in VLSI CAD

  • Chapter
  • First Online:
Machine Learning in VLSI Computer-Aided Design
  • 2794 Accesses

Abstract

Applying machine learning to analyze data from design and test flows has received growing interests in recent years. In some applications, data can be limited and the core of analytics becomes a feature search problem. In this context, the chapter explains the challenges for adopting a traditional machine learning problem formulation view. An adjusted machine learning view is suggested where learning from limited data is treated as an iterative feature search process. The theoretical and practical considerations for implementing such a search process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.-C. Wang, Experience of data analytics in EDA and test - principles, promises, and challenges. IEEE Trans. CAD 36(6), 885–898 (2017)

    Article  Google Scholar 

  2. W. Chen, L.-C. Wang, J. Bhadra, Simulation knowledge extraction and reuse in constrained random processor verification, in ACM/IEEE Design Automation Conference (2013)

    Google Scholar 

  3. L.-C. Wang, Data mining in functional test content optimization, in ACM/IEEE Asian South Pacific Design Automation Conference (2015)

    Google Scholar 

  4. G. Drmanac, F. Liu, L.-C. Wang, Predicting variability in nanoscale lithography processes, in ACM/IEEE Design Automation Conference (2009)

    Google Scholar 

  5. J. Chen, B. Bolin, L.-C. Wang, J. Zeng, D. (Gagi) Drmanac, M. Mateja, Mining AC delay measurements for understanding speed-limiting paths, in IEEE International Test Conference (2010)

    Google Scholar 

  6. I. Goodfellow, Y. Benjio, A. Courville, Deep Learning (The MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  7. J. Chen, L.-C. Wang, P.-H. Chang, J. Zeng, S. Yu, M. Metaja, Data learning techniques and methodology for Fmax prediction, in IEEE International Test Conference (2009)

    Google Scholar 

  8. J. Tikkanen, S. Siatkowski, N. Sumikawa, L.-C. Wang, M.S. Abadir, Yield optimization using advanced statistical correlation methods, in IEEE International Test Conference (2014)

    Google Scholar 

  9. S. Siatkowski, L.-C. Wang, N. Sumikawa, L. Winemberg, Learning the process for correlation analysis, in IEEE VLSI Test Symposium (2017)

    Google Scholar 

  10. F. Pedregosa et al., Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2010)

    MathSciNet  MATH  Google Scholar 

  11. N. Callegari, D. (Gagi) Drmanac, L.-C. Wang, M.S. Abadir, Classification rule learning using subgroup discovery of cross-domain attributes responsible for design-silicon mismatch, in ACM/IEEE Design Automation Conference, 374–379 (2010)

    Google Scholar 

  12. D.H. Wolpert, The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)

    Article  Google Scholar 

  13. M. Nero, J. Shan, L.-C. Wang, N. Sumikawa, Concept recognition in production yield data analytics, in IEEE International Test Conference (2018)

    Google Scholar 

  14. K. Hsieh, L.-C. Wang, W. Chen, J. Bhadra, Learning to produce direct tests for security verification using constrained process discovery, in Design Automation Conference (2017)

    Google Scholar 

  15. K-K. Hsieh, S. Siatkowski, L.-C. Wang, W. Chen, J. Bhadra, Feature extraction from design documents to enable rule learning for improving assertion coverage, in ACM/IEEE Asia South Pacific Design Automation Conference (2017)

    Google Scholar 

  16. L.G. Valiant, A theory of learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  Google Scholar 

  17. M.J. Kearns, U. Vazirani, An Introduction to Computational Learning Theory (The MIT Press, Cambridge, 1994)

    Book  Google Scholar 

  18. V. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 2000)

    Book  Google Scholar 

  19. M.J. Kearns, U. Vazirani, Cryptographic limitations on learning Boolean formulae and finite automata. J. ACM 14(1), 67–95 (1994)

    Article  MathSciNet  Google Scholar 

  20. A. Daniely, N. Linial, S. Shaleve-Shwartz, From average case complexity to improper learning complexity, in ACM Symposium on Theory of Computing (2014), pp. 441–448.

    Google Scholar 

  21. D.H. Wolpert, The relationship between Occam’s Razor and convergent guessing. Complex Syst. 4, 319–368 (1990)

    MathSciNet  MATH  Google Scholar 

  22. J. Pearl, On the connection between the complexity and credibility of inferred models. Int. J. General Syst. 4, 255–264 (1978)

    Article  MathSciNet  Google Scholar 

  23. A. Daniely, S. Shalev-Shwartz, Complexity theoretic limitations on learning DNF’s, in PMLR: Proceeding of Machine Learning Research, vol. 49 (2016), pp. 815–830

    Google Scholar 

  24. R. Motwani, P. Raghavani, Randomized Algorithms (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  25. D. Haussler, Quantifying inductive bias: AI learning algorithms and valiant’s learning framework. Artif. Intell. 36, 177–221 (1998)

    Article  MathSciNet  Google Scholar 

  26. Y. Ben-Haim, A. Ivrii, O. Margalit, A. Matsliah, Perfect hashing and CNF encodings of cardinality constraints, in International Conference on Theory and Applications of Satisfiability Testing (Springer, Berlin, 2012), pp. 397–409

    MATH  Google Scholar 

  27. C. Sinz, Towards an optimal CNF encoding of boolean cardinality constraints, in International Conference on Principles and Practice of Constraint Programming (Springer, Berlin, 2005), pp. 827–831

    MATH  Google Scholar 

  28. K. Hsieh, L.-C. Wang, A concept learning tool based on calculating version space cardinality (2018). arXiv:1803.08625v1

    Google Scholar 

  29. A. Biere, Lingeling, Plingeling and Treengeling entering the SAT competition, in Proceedings of SAT Competition (2013)

    Google Scholar 

  30. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, J. Bengio, Generative adversarial networks (2014). arXiv:1406.2661

    Google Scholar 

  31. A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks (2016). arXiv:1511.06434v2

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Science Foundation under grant No. 1618118 and in part by Semiconductor Research Corporation with project 2016-CT-2706.

The author would also like to thank his doctoral student Kuo-Kai Hsieh especially for his help on Sects. 13.6.4 and 13.6.5.

This chapter is an extension from author’s prior work “Machine Learning for Feature-Based Analytics,” in Proceeding 2018 International Symposium on Physical Design, pp. 74-81 Ⓒ2018 Association for Computing Machinery, Inc. http://doi.acm.org/10.1145/3177540.3177555. Reprinted by permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-C. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, LC. (2019). Learning from Limited Data in VLSI CAD. In: Elfadel, I., Boning, D., Li, X. (eds) Machine Learning in VLSI Computer-Aided Design. Springer, Cham. https://doi.org/10.1007/978-3-030-04666-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04666-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04665-1

  • Online ISBN: 978-3-030-04666-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics