Skip to main content

Biochar in Organic Farming

  • Chapter
  • First Online:

Abstract

Biochar is charcoal-like solid material made from the carbonization (i.e., thermochemical conversion) of biomass in an oxygen-limited environment. This process in which large biomass particles are heated slowly in the absence of oxygen to produce biochar is termed slow pyrolysis. Pyrolysis is the temperature-driven chemical decomposition of biomass without combustion. Biochar may be used as a product itself or as an ingredient within a blended product in a range of applications; it serves as an agent for soil improvement, improved resource use efficiency, remediation and/or protection against environmental pollution, and greenhouse gas mitigation. The conversion of organic waste to produce biochar using the pyrolysis process is one viable option that can enhance the natural rates of carbon sequestration in the soil, reduce farm waste, and improve soil quality. The sustainable use of biochar could reduce global net emissions of carbon dioxide, methane, and nitrous oxide without endangering food security, habitats, or soil conservation. The use of biochar as a soil amendment is proposed as a new approach to mitigate human-induced climate change along with improving soil productivity. Water retention through biochar is possible because of the porous structure and high surface area of biohar. As a result, nutrients, phosphorus, and agrochemicals are retained for the plants’ benefit. Common methods for biochar production include the heap method, drum method, and biochar stove. Prime classes of biochar include the carbon storage class, fertilizer class, fertilizer grade, liming class, and particle size class. Biochar has manifold practical applications, some of which include use in animal farming, as soil conditioner, in the building sector as protection against electromagnetic radiation, in soil decontamination, in cleaning wastewater, as a barrier to prevent pesticides from getting into surface water, in the treatment of pond and lake water for adsorbing pesticides and fertilizers, for improving water aeration, in biogas production, in the textile industry as a fabric additive, as a deodorant, and as a thermal insulator that reflects heat, thereby enabling comfortable sleep without any heat build-up in the summer. Biochar has positive effects on soil’s physical, chemical, and enzyme activities and biological properties, resulting in increased crop productivity. The success of biochar use seems to be dependent on a reduction of biochar price. Biochar price is also largely dependent on the biochar production system, source and availability of biomass, transportation, application costs, efficacy of applied biochar in soil, and the mitigation of climate change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, P., & Reed, T. B. (2004). Biomass gasification: Clean residential stoves, commercial power generation, and global impacts. Prepared for the LAMNET Project International Workshop on “Bioenergy for a Sustainable Development,” 8–10 Nov 2004, Viña del Mar, Chile.

    Google Scholar 

  • Anonymous. (2006). Cornell University: Amazonian Terra Preta can transform poor soil into fertile. Science Daily.

    Google Scholar 

  • Ameloot, N., Graber, E. R., Verheijen, F. G. A., & De Neve, S. (2013). Interactions between biochar stability and soil organisms: review and research needs. European Journal of Soil Science, 64, 379–390.

    Google Scholar 

  • Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111, 81–84.

    Article  Google Scholar 

  • Austin, A. (2009). A new climate change mitigation tool. Biomass Magazine. BBI International.

    Google Scholar 

  • Brown, N. C. (1917). The hardwood distillation industry in New York. The New York State College of Forestry at Syracuse University, USA.

    Google Scholar 

  • Camps Arbestain, M., Amonette, J. E., Singh, B., Wang, T., & Schmidt, H.-P. (2015). A biochar classification system and associated test methods. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management – science and technology (2nd ed.). New York: Routledge.

    Google Scholar 

  • Chang, H. Y., Ahmed, O. H., & Majid, N. M. A. (2014). Improving phosphorus availability in an acid soil using organic amendments produced from agro-industrial wastes. http://dx.doi.org.

  • Cheng, F. Y., Huang, C. W., Wan, T. C., Liu, Y. T., Lin, L. C., & Lou Chyr C. Y. (2008). Effects of free-range farming on carcass And meat qualities of black-feathered Taiwan native chicken. Asian Australian Journal of Animal Science, 21(8), 1201–1206.

    Google Scholar 

  • Cho, S., Charles, P. F., Francisco, D., Scott, J. W., Craig, W. H., John, B. K., Pamela, L. R., Lorin, D. W., & Jeffrey, B. B. (2013). Herd-level risk factors associated with fecal shedding of Shiga toxinencoding bacteria on dairy farms in Minnesota, USA. Canadian Veterinary Journal B, 54(7), 693–697.

    Google Scholar 

  • Crystal, S., Margaret, L. B., Grace, E. H., Clay, B., Maren, P., Paul, J., Vandana, S., Liu, H., Patricia, S., Christopher, S., & Dena, M. B. (2012). Are organic foods safer or healthier than conventional alternatives?: A systematic review. Annals of Internal, Medicine, 157(5), 348–366.

    Google Scholar 

  • Dainy, M. S. M. (2015). Investigations on the efficacy of biochar from tender coconut husk for enhanced crop production. Ph.D.(Ag) thesis, Kerala Agricultural University, Thrissur, 245 p.

    Google Scholar 

  • Demirbas, A. (2004). Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72, 243–248.

    Article  CAS  Google Scholar 

  • Demise, W., Liu, Z., & Chang, M. (2014). Effect of biochar on carbon fractions and enzyme activity of red soil. Catena, 121, 214–221.

    Article  Google Scholar 

  • Doerr, S. H., Shakesby, R. A., & Walsh, R. P. D. (2000). Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51, 33–65.

    Article  Google Scholar 

  • Dufour, D. L. (1990). Use of tropical rainforests by native Amazonians. Bioscience, 40, 652.

    Article  Google Scholar 

  • Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. B., Silber, A., & Graber, E. R. (2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100, 913–921.

    Article  Google Scholar 

  • Elangovan, R. (2014). Effect of biochar on soil properties, yield and quality of cotton-maize cowpea cropping sequence. Ph.D.(Ag) thesis, Tamil Nadu Agricultural University, Coimbatore, 425 p.

    Google Scholar 

  • Elliott, D. C. (2007). Historical developments in hydroprocessing bio-oils. Energy & Fuels, 21, 1792–1815.

    Article  CAS  Google Scholar 

  • Emrich, W. (1985). Handbook of biochar making. The traditional and industrial methods. Boston: D. Reidel Publishing Company.

    Google Scholar 

  • Glaser, B. (2005). https://www.terradaprata.com.br

  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biology and Fertility of Soil, 35, 219–230.

    Article  CAS  Google Scholar 

  • Graetz, R. D., & Skjemstad, J. O. (2003). The charcoal sink of biomass burning on the Australian continent (CSIRO Atmospheric Research Technical Paper No. 64). Australia: Aspendale, CSIRO.

    Google Scholar 

  • Granatstein, D., Kruger, C. E., Collins, H., Galinato, S., Garcia-Perez, M., & Yoder, J. (2009). Use of biochar from the pyrolysis of waste organic material as a soil amendment. Final Project Report. Center for Sustaining Agriculture and Natural Resources, Washington State University, Wenatchee, 181 p. http://www.ecy.wa.gov/biblio/0907062.html.

  • IBI, International Biochar Initiative. (2006). www.biochar-international.org.

  • Iliffe, R. (2009). Is the biochar produced by an Anila stove likely to be a beneficial soil additive? UKBRC Working Paper 4. www.biochar.org.uk.

  • Inthapanya, S. K, & Preston, T. R. (2012). Biochar increases biogas production in a batch digester charged with cattle manure. Livestock Research for Rural Development, 24. December 2012.

    Google Scholar 

  • Izaurralde, R. C., Rosenberg, N. J., & Lal, R. (2001). Mitigation of climate change by soil carbon sequestration: issues of science, monitoring, and degraded lands. Advances in Agronomy, 70, 1–75.

    Article  Google Scholar 

  • Jien, S. H., & Wang, C. S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233.

    Article  CAS  Google Scholar 

  • Joseph, S., Graber, E. R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., Pan, G. X., Li, L., Taylor, P., Rawal, A., & Hook, J. (2013). Shifting paradigms on biochar: micro/nano-structures and soluble components are responsible for its plant-growth promoting ability. Carbon Management, 4, 323–343.

    Article  CAS  Google Scholar 

  • Kleiner, K. (2013). The bright prospect of biochar: Article: Nature reports climate change. nature.com.

  • Kolb, S. E., Fermanich, K. J., & Dornbush, M. E. (2009). Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal, 73, 1173–1181.

    Article  CAS  Google Scholar 

  • Laufer, J., & Tomlinson, T. (2013). Biochar field studies: An IBI research summary. info@biochar-international.org.

    Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 1–12). London: Earthscan.

    Google Scholar 

  • Lehmann, J., & Rondon, M. (2006). Biochar soil management on highly weathered soils in the humid tropics. In N. Uphoff et al. (Eds.), Biological approaches to sustainable soil systems (pp. 517–530). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems—a review. Mitigation and Adaptation Strategies for Global Change, 11, 403–427.

    Article  Google Scholar 

  • Lehmann, J., Kaampf, N., Woods, W. I., Sombroek, W., Kern, D. C., & Cunha, T. J. F. (2007). Historical ecology and future explorations (p. 484). Kluwer Academic Publishers; The Netherlands.

    Google Scholar 

  • Lehmann, J. (2009). Biological carbon sequestration must and can be a win-win approach. Climate Change, 97, 459.

    Article  CAS  Google Scholar 

  • Lenton, T., & Vaughan, N. (2009). Geoengineering responses to climate change (pp. 73–140). New York: Springer.

    Google Scholar 

  • Lin, C. M., & Chang, C. W. (2008). Production of thermal insulation composites containing bamboo charcoal. Textile Research Journal, 78, 555–560.

    Article  CAS  Google Scholar 

  • Liu, X. H., & Zhang, X. C. (2012). Effect of biochar on pH of alka-line soils in the loess plateau: results from incubation experiments. International Journal of Agriculture and Biological, 14, 745–750.

    CAS  Google Scholar 

  • Mao, J.-D., Johnson, R. L., Lehmann, J., Olk, J., Neeves, E. G., Thompson, M. L., & Schmidt- Rohr, K. (2012). Abundant and stable char residues in soils: Implications for soil fertility. Environmental Science and Technology, 46, 9571–9576.

    Article  CAS  Google Scholar 

  • McHenry, M. P. (2009). Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agriculture, Ecosystems & Environment, 129, 1–7.

    Article  CAS  Google Scholar 

  • Nartey, D. O., & Zhao, B. (2014). Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Advances in Materials Science and Engineering, 2014.

    Google Scholar 

  • Nigussie, A., Kissi, E., Misganaw, M., & Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of Lettuce (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agricultural and Environmental Sciences, 12, 369–376.

    CAS  Google Scholar 

  • Pelaez-Samaniego, M. R., Garcia-Perez, M., Cortez, L. B., Rosillo- Calle, F., & Mesa, J. (2008). Improvements of Brazilian carbonization industry as part of the creation of a global biomass economy. Renewable and Sustainable Energy Reviews, 12, 1063–1086.

    Article  Google Scholar 

  • Peng, X., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern china. Soil and Tillage Research, 112, 159–166.

    Article  Google Scholar 

  • Purakayastha, T. J. (2012). Preparation and utilization of biochar for soil amendment. In H. Pathak, P. K. Aggarwal, & S. D. Singh (Eds.), Climate change impact, adaptation and mitigation in agriculture: Methodology for assessment and applications (pp. 280–294). New Delhi: Indian Agricultural Research Institute.

    Google Scholar 

  • Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221–227.

    Article  CAS  Google Scholar 

  • Reddy, B. (2011a). Holy mother biochar Kiln. http://okgeo.org; http://ohanda.org.

  • Reddy, B. (2011b). Biochar production and use. http://www.slideshare.net/saibhaskar/biochar-production-and-uses-dr-reddy-5242206.

  • Revell, K. T. (2011). The effect of fast pyrolysis biochar made from poultry litter on soil properties and plant growth. M.Sc. thesis, Virginia Polytechnic Institute and State University, Blacksburg, 75p.

    Google Scholar 

  • Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environmental Science & Technology, 44, 827–833.

    Article  CAS  Google Scholar 

  • Schmidt, H. P. (2012). 55 uses of biochar. Ithaka Journal, 1/2012, 286–289. www.ithaka-journal.net.

    Google Scholar 

  • Schmidt, H. P. (2013). Biochar as building material for an optimal indoor climate. Ithaka Journal, 2013, x–y.

    Google Scholar 

  • Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research (CSI-RO Land & Water Science Report 05/09). Canberra: CSIRO.

    Google Scholar 

  • Sohi, S., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82.

    Article  CAS  Google Scholar 

  • Sombroek, W. G. (1966). A reconnaissance of the soils of the Brazilian Amazon region (p. 283, Vol. 672). Verslagen van Landbouwkundige Onderzoekingen; Wageningen, The Netherlands: Amazon soils.

    Google Scholar 

  • Southavong, S., Peterson, T. R, Man, N. van (2012). Effect of biochar and biodigester effluent on growth of water spinach (Ipomoea aquatic) and soil fertility. ResearchGate. Feb, 2012.

    Google Scholar 

  • Srinivasarao, C., Vankateswarlu, B., Lal, R., Singh, A. K., Kundu, S., Vittal, K. P. R., Balaguruvaiah, G., Vijaya Shankar Babu, M., Ravindra Chary, G., Prasadbabu, M. B. B., & Yellamanda Reddy, T. (2012). Soil carbon sequestration and agronomic productivity of an Alfisol for a groundnut-based system in a semiarid environment in southern India. European Journal of Agronomy, 43, 40–48.

    Article  CAS  Google Scholar 

  • Srinivasarao, Ch., Gopinath, K. A., Venkatesh, G., Dubey, A. K., Wakudkar, H., Purakayastha, T. J., Pathak, H., Pramod Jha., Lakaria, B. L., Rajkhowa, D. J., Mandal, S., Jeyaraman, S., Venkateswarlu, B., & Sikka, A. K. (2013). Use of biochar for soil health enhancement and greenhouse gas mitigation in India: Potential and constraints, central research institute for dryland agriculture, Hyderabad, Andhra Pradesh. 51p.Publ. CRIDA, Hyderabad NICRA Bulletin 1/2013 Website: http://nicra-icar.in.

  • Sugumaran, P., & Sheshadri, S. (2010). Biomass charcoal briquetting: Technology for alternative energy based income generation in rural areas. Taramani: Shri AMM Murugappa Chettiar Research Centre. 20 p.

    Google Scholar 

  • Timmons, D. (2016). Biochar economics: A cost-effectiveness analysis. Conference Presentations USBI: US biochar initiatives University Of Massachusetts, Boston. www.biochar-us.org.

  • Uzoma, K. C., Inoue, M., Andry, H., Zahoor, A., & Nishihara, E. (2011). Influence of biochar application on sandy soil hydraulic properties and nutrient retention. Journal of Food, Agriculture and Environment, 9, 1137–1143.

    CAS  Google Scholar 

  • Venkatesh, G., Korwar, G. R., Venkateswarlu, B., Gopinath, K. A., Mandal, U. K., Srinivasarao, Ch., & Grover, M. T. (2010). Preliminary studies on conversion of maize stalks into biochar for terrestrial sequestration of carbon in rainfed agriculture. In National symposium on climate change and rainfed agriculture (pp. 388–391). Hyderabad: CRIDA. 18–20 February, 2010.

    Google Scholar 

  • Whitman, T., & Lehmann, J. (2009). Biochar – one way forward for soil carbon in offset mechanisms in Africa? Environmental Science and Policy, 12, 1024–1027.

    Article  CAS  Google Scholar 

  • Woolf, D. (2008). Biochar as a soil amendment: A review of the environmental implications. http://orgprints.org/13268/.

  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 1–9.

    Article  Google Scholar 

  • Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S., & Ogawa, M. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in south Sumatra, Indonesia. Soil Science and Plant Nutrition, 52, 489–495.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borthakur, P.K., Bhattacharyya, R.K., Das, U. (2019). Biochar in Organic Farming. In: Sarath Chandran, C., Thomas, S., Unni, M. (eds) Organic Farming. Springer, Cham. https://doi.org/10.1007/978-3-030-04657-6_7

Download citation

Publish with us

Policies and ethics