Skip to main content

Upper and Lower Bounds for Different Parameterizations of (n,3)-MAXSAT

  • Conference paper
  • First Online:
  • 720 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

In this paper, we consider the (n,3)-MAXSAT problem. The problem is a special case of the Maximum Satisfiability problem with an additional requirement that in input formula each variable appears at most three times. Here, we improve previous upper bounds for (n,3)-MAXSAT in terms of n (number of variables) and in terms of k (number of clauses that we are required to satisfy). Moreover, we prove that satisfying more clauses than the simple all true assignment is an NP-hard problem.

Research is supported by Russian Science Foundation (project 18-71-10042).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61(3), 638–655 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bansal, N., Raman, V.: Upper bounds for MaxSat: further improved. ISAAC 1999. LNCS, vol. 1741, pp. 247–258. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46632-0_26

    Chapter  Google Scholar 

  3. Basavaraju, M., Francis, M.C., Ramanujan, M., Saurabh, S.: Partially polynomial kernels for set cover and test cover. SIAM J. Discrete Math. 30(3), 1401–1423 (2016)

    Article  MathSciNet  Google Scholar 

  4. Battiti, R., Protasi, M.: Reactive search, a history-sensitive heuristic for MAX-SAT. J. Exp. Algorithmics (JEA) 2, 2 (1997)

    Article  MathSciNet  Google Scholar 

  5. Berg, J., Hyttinen, A., Järvisalo, M.: Applications of MaxSAT in data analysis. Pragmatics of SAT (2015)

    Google Scholar 

  6. Bliznets, I., Golovnev, A.: A new algorithm for parameterized MAX-SAT. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 37–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33293-7_6

    Chapter  MATH  Google Scholar 

  7. Bliznets, I.A.: A new upper bound for (n, 3)-MAX-SAT. J. Math. Sci. 188(1), 1–6 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chen, J., Kanj, I.A.: Improved exact algorithms for MAX-SAT. Discrete Appl. Math. 142(1–3), 17–27 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chen, J., Xu, C., Wang, J.: Dealing with 4-variables by resolution: an improved MaxSAT algorithm. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 178–188. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_15

    Chapter  Google Scholar 

  10. Crowston, R., Gutin, G., Jones, M., Raman, V., Saurabh, S., Yeo, A.: Fixed-parameter tractability of satisfying beyond the number of variables. Algorithmica 68(3), 739–757 (2014)

    Article  MathSciNet  Google Scholar 

  11. Crowston, R., Jones, M., Mnich, M.: Max-Cut parameterized above the edwards-erdős bound. Algorithmica 72(3), 734–757 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  MATH  Google Scholar 

  13. Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011)

    Article  MathSciNet  Google Scholar 

  14. Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem parameterized above guaranteed value. Theory Comput. Syst. 41(3), 521–538 (2007)

    Article  MathSciNet  Google Scholar 

  15. Kojevnikov, A., Kulikov, A.S.: A new approach to proving upper bounds for MAX-2-SAT. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 11–17. Society for Industrial and Applied Mathematics (2006)

    Google Scholar 

  16. Kulikov, A.S., Kutskov, K.: New upper bounds for the problem of maximal satisfiability. Discrete Math. Appl. 19(2), 155–172 (2009)

    Article  MathSciNet  Google Scholar 

  17. Li, W., Xu, C., Wang, J., Yang, Y.: An improved branching algorithm for (n, 3)-MaxSAT based on refined observations. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017 Part II. LNCS, vol. 10628, pp. 94–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_7

    Chapter  Google Scholar 

  18. Lin, P.C.K., Khatri, S.P.: Application of MAX-SAT-based atpg to optimal cancer therapy design. BMC Genomics 13(6), S5 (2012)

    Article  Google Scholar 

  19. Madathil, J., Saurabh, S., Zehavi, M.: Max-Cut Above Spanning Tree is fixed-parameter tractable. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol. 10846, pp. 244–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90530-3_21

    Chapter  Google Scholar 

  20. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  Google Scholar 

  21. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J. Algorithms 36(1), 63–88 (2000)

    Article  MathSciNet  Google Scholar 

  22. Poloczek, M., Schnitger, G., Williamson, D.P., Van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: simple algorithms and inapproximability bounds. SIAM J. Comput. 46(3), 1029–1061 (2017)

    Article  MathSciNet  Google Scholar 

  23. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inf. Processing Letters 65(1), 1–6 (1998)

    Article  MathSciNet  Google Scholar 

  24. Walter, R., Zengler, C., Küchlin, W.: Applications of MAXSAT in automotive configuration. In: Configuration Workshop, vol. 1, p. 21 (2013)

    Google Scholar 

  25. Xu, C., Chen, J., Wang, J.: Resolution and linear CNF formulas: improved (n, 3)-MaxSAT algorithms. Theor. Comput. Sci. (2016)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Sergey Kopeliovich for discussions in early stage of the project and Danil Sagunov as well as the anonymous reviewers for valuable comments that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Belova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belova, T., Bliznets, I. (2018). Upper and Lower Bounds for Different Parameterizations of (n,3)-MAXSAT. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics