Skip to main content

Bipartizing with a Matching

  • Conference paper
  • First Online:
Book cover Combinatorial Optimization and Applications (COCOA 2018)

Abstract

We study the problem of determining whether a given graph \(G=(V,E)\) admits a matching M whose removal destroys all odd cycles of G (or equivalently whether \(G-M\) is bipartite). This problem is equivalent to determine whether G admits a (2, 1)-coloring, which is a 2-coloring of V(G) in which each color class induces a graph of maximum degree at most 1. We determine a dichotomy related to the NP-completeness of such a decision problem, where it is NP-complete even for 3-colorable planar graphs of maximum degree 4, while it is linear-time solvable for graphs of maximum degree at most 3. In addition, we present polynomial-time algorithms for many graph classes including those in which every odd-cycle subgraph is a triangle, graphs having bounded dominating sets, and \(P_5\)-free graphs. Additionally, we show that this problem is fixed-parameter tractable when parameterized by the clique-width, which implies that it is polynomial-time solvable for many interesting graph classes, such as distance-hereditary, outerplanar, and chordal graphs.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq) - CNPq/DAAD2015SWE/290021/2015-4, and FAPERJ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, J., Jacobson, M.: On a generalization of chromatic number. In: Proceedings of Sixteenth Southeastern International Conference on Combinatorics, Graph Theory and Computing (SEICCGTC 1985), vol. 47, pp. 18–33 (1985)

    Google Scholar 

  2. Angelini, P., et al.: Vertex-coloring with defects. J. Graph Algor. Appl. 21(3), 313–340 (2017). https://doi.org/10.7155/jgaa.00418

    Article  MathSciNet  MATH  Google Scholar 

  3. Axenovich, M., Ueckerdt, T., Weiner, P.: Splitting planar graphs of girth 6 into two linear forests with short paths. J. Graph Theory 85(3), 601–618 (2017). https://doi.org/10.1002/jgt.22093

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback vertex set for \(P_5\)-free graphs. Algorithmica (2018). https://doi.org/10.1007/s00453-018-0474-x

  6. Bondy, J.A., Locke, S.C.: Largest bipartite subgraphs in triangle-free graphs with maximum degree three. J. Graph Theory 10(4), 477–504 (1986)

    Article  MathSciNet  Google Scholar 

  7. Borodin, O., Kostochka, A., Yancey, M.: On \(1\)-improper \(2\)-coloring of sparse graphs. Discrete Math. 313(22), 2638–2649 (2013). https://doi.org/10.1016/j.disc.2013.07.014

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandstädt, A., Dragan, F.F., Le, H., Mosca, R.: New graph classes of bounded clique-width. Theory Comput. Syst. 38(5), 623–645 (2005). https://doi.org/10.1007/s00224-004-1154-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Brandstädt, A., Engelfriet, J., Le, H., Lozin, V.V.: Clique-width for \(4\)-vertex forbidden subgraphs. Theory Comput. Syst. 39(4), 561–590 (2006)

    Article  MathSciNet  Google Scholar 

  10. Brandstädt, A., Klembt, T., Mahfud, S.: \(P_6\)- and triangle-free graphs revisited: structure and bounded clique-width. Discrete Math. Theor. Comput. Sci. 8, 173–188 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154(13), 1824–1844 (2006). https://doi.org/10.1016/j.dam.2006.03.031

    Article  MathSciNet  MATH  Google Scholar 

  12. Camby, E., Schaudt, O.: A new characterization of \(P_k\)-free graphs. Algorithmica 75(1), 205–217 (2016). https://doi.org/10.1007/s00453-015-9989-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Carneiro, A.D.A., Protti, F., Souza, U.S.: Deletion graph problems based on deadlock resolution. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 75–86. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_7

    Chapter  Google Scholar 

  14. Choi, H.A., Nakajima, K., Rim, C.S.: Graph bipartization and via minimization. SIAM J. Discrete Math. 2(1), 38–47 (1989). https://doi.org/10.1137/0402004

    Article  MathSciNet  MATH  Google Scholar 

  15. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  Google Scholar 

  16. Cowen, L., Goddard, W., Jesurum, C.E.: Defective coloring revisited. J. Graph Theory 24(3), 205–219 (1997)

    Article  MathSciNet  Google Scholar 

  17. Cowen, L.J., Cowen, R., Woodall, D.: Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory 10(2), 187–195 (1986)

    Article  MathSciNet  Google Scholar 

  18. Diestel, R.: Graph Theory. Springer, Heidelberg (2017)

    Book  Google Scholar 

  19. Eaton, N., Hull, T.: Defective list colorings of planar graphs. Bull. Inst. Combin. Appl 25, 79–87 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Erdős, P.: On some extremal problems in graph theory. Israel J. Math. 3(2), 113–116 (1965)

    Article  MathSciNet  Google Scholar 

  21. Furmańczyk, H., Kubale, M., Radziszowski, S.: On bipartization of cubic graphs by removal of an independent set. Discrete Appl. Math. 209, 115–121 (2016)

    Article  MathSciNet  Google Scholar 

  22. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput. Sci. 11(03), 423–443 (2000). https://doi.org/10.1142/S0129054100000260

    Article  MathSciNet  MATH  Google Scholar 

  23. Harary, F., Jones, K.: Conditional colorability ii: bipartite variations. Congr. Numer. 50, 205–218 (1985)

    MathSciNet  MATH  Google Scholar 

  24. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)

    Article  MathSciNet  Google Scholar 

  25. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Lima, C.V.G.C., Rautenbach, D., Souza, U.S., Szwarcfiter, J.L.: Decycling with a matching. Inf. Proc. Lett. 124, 26–29 (2017). https://doi.org/10.1016/j.ipl.2017.04.003

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Wang, J., You, J., Chen, J., Cao, Y.: Edge deletion problems: branching facilitated by modular decomposition. Theor. Comput. Sci. 573, 63–70 (2015)

    Article  MathSciNet  Google Scholar 

  28. Lovász, L.: On decomposition of graphs. Studia Sci. Math. Hungar. 1, 237–238 (1966)

    MathSciNet  MATH  Google Scholar 

  29. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2), 1–29 (2008)

    Article  MathSciNet  Google Scholar 

  30. Protti, F., Souza, U.S.: Decycling a graph by the removal of a matching: characterizations for special classes. CoRR abs/1707.02473 (2017). http://arxiv.org/abs/1707.02473

  31. Robertson, N., Seymour, P.: Graph minors. ii. Algorithmic aspects of tree-width. J. Algorith. 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4

    Article  MathSciNet  Google Scholar 

  32. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing (STOC 1978), pp. 216–226. ACM Press, New York (1978). https://doi.org/10.1145/800133.804350

  33. Thorup, M.: All structured programs have small tree width and good register allocation. Inf. Comput. 142(2), 159–181 (1998). https://doi.org/10.1006/inco.1997.2697

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos V. G. C. Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, C.V.G.C., Rautenbach, D., Souza, U.S., Szwarcfiter, J.L. (2018). Bipartizing with a Matching. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics