A Load-Balanced and Low-Delay Data Collection for Wireless Sensor Networks

  • Xiaoyan Kui
  • Junbin LiangEmail author
  • Huakun DuEmail author
  • Shaojun Zou
  • Zhixiong Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)


Energy consumption of nodes and delay in data collection are both important issues in large-scale wireless sensor networks. It is a challenging problem to achieve the goal of balancing energy consumption of nodes and shortening data collection delay at the same time. The paper utilizes a mobile data collector to collect data in the network and proposes a delay-constrained data collection algorithm named LAWA. LAWA constructs a shortest path tree (named load-balanced fat tree) according to the energy of nodes and the number of hops among nodes. Theoretical analyses and massive simulations show that, LAWA cannot only balance the energy consumption of nodes to prolong the network lifetime, but also shorten the path length of the mobile data collector and reduce the delay in data collection when compared with other existing algorithms.


Wireless sensor networks Data collection Height-limited tree Network lifetime 



This work is supported by the National Natural Science Foundation of China (Grant nos. 61502540, 61562005, 61502057), the Natural Science Foundation of Guangxi Province (Grant no. 2015GXNSFAA139286), The Cultivation Plan For One Thousand Young and Middle-Aged Backbone Teachers in Guangxi Higher Education School (Guangxi Education People (2017) No. 49), the National Science Foundation of Hunan Province (Grant no. 2015JJ4077), and the China Scholarship Council Project (Grant no. 2015 [3012]).


  1. 1.
    Yang, S., Adeel, U., Tahir, Y., et al.: Practical opportunistic data collection in wireless sensor networks with mobile sinks. IEEE Trans. Mob. Comput. 16(5), 1420–1433 (2017)CrossRefGoogle Scholar
  2. 2.
    Zhan, C., Zeng, Y., Zhang, R.: Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel. Commun. Lett. 7(3), 328–331 (2017)CrossRefGoogle Scholar
  3. 3.
    Choudhari, E., Bodhe, K.D., Mundada, S.M.: Secure data aggregation in WSN using iterative filtering algorithm. In: International Conference on Innovative Mechanisms for Industry Applications, pp. 1–5. IEEE (2017)Google Scholar
  4. 4.
    Gatti, R., Kumar, S.S., Kumar, K.S., Prasad, P.R., et al.: Improvement of speed in data collection rate in tree based wireless sensor network. In: IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, pp. 720–723. IEEE (2017)Google Scholar
  5. 5.
    Chen, C.C.: A novel data collection method with recharge plan for rechargeable wireless sensor networks. Wirel. Commun. Mob. Comput. 2018, 1–19 (2018)Google Scholar
  6. 6.
    Takaishi, D., Nishiyama, H., Kato, N., Miura, R.: Towards energy efficient big data gathering in densely distributed sensor networks. IEEE Trans. Emerg. Top. Comput. 2(3), 388–397 (2014)CrossRefGoogle Scholar
  7. 7.
    Zhang, X.W., Dai, H.P., Xu, L.J., Chen, G.H.: Mobility-Assisted data gathering strategies in WSNs. Ruan Jian Xue Bao/J. Softw. 24(2), 198–214 (2013). (in Chinese with English abstract). Scholar
  8. 8.
    Olariu S, Stojmenovic I.: Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In: Proceedings of the IEEE INFOCOM, pp. 1–12. IEEE Press, New York (2006)Google Scholar
  9. 9.
    Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: Modeling a three-tier architecture for sparse sensor networks. In: Proceedings of the ACM SNPA, pp. 30–41. IEEE Press, New York (2003)Google Scholar
  10. 10.
    Salarian, H., Chin, K.-W., Naghdy, F.: An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63(5), 2407–2419 (2014)CrossRefGoogle Scholar
  11. 11.
    Zhao, M., Yang, Y.Y.: A framework for mobile data gathering with load balanced clustering and MIMO uploading. In: Proceedings of the IEEE INFOCOM, pp. 2759–2767. IEEE Press, New York (2011)Google Scholar
  12. 12.
    Ma, M., Yang, Y.Y., Zhao, M.: Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Trans. Veh. Technol. 62(4), 1472–1483 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhao, M., Yang, Y.Y.: Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Trans. Comput. 61(2), 265–277 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ma, M, Yang, Y.Y.: Data gathering in wireless sensor networks with mobile collectors. In: In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–9 (2008)Google Scholar
  15. 15.
    Guo, S.T., Wang, C., Yang, Y.Y.: Mobile data gathering with wireless energy replenishment in rechargeable sensor networks. In: Proceedings of of the IEEE INFOCOM, pp. 1932–1940. IEEE Press, New York (2013)Google Scholar
  16. 16.
    Xing, G.L., Wang, T., Jia, W.J., Li, M.: Rendezvous design algorithms for wireless sensor networks with a mobile base station. In: Proceedings of the ACM MobiHoc, pp. 231–240. ACM Press, New York (2008)Google Scholar
  17. 17.
    Chipara, O., et al.: Real-time power-aware routing in sensor networks, In: 14th IEEE International Workshop on Quality of Service IWQoS 2006, pp. 83-92. IEEE (2006)Google Scholar
  18. 18.
    Pon, R., et al.: Networked infomechanical systems: a mobile embedded networked sensor platform. In: Proceedings of the IEEE IPSN, pp. 376–381. ACM/IEEE Press, New York (2005)Google Scholar
  19. 19.
    An, H.C., Kleinberg, R., Shmoys, D.B.: Improving christofides’ algorithm for the s-t path TSP. In: Proceedings of the ACM STOC, pp. 875–886. ACM Press, New York (2012)Google Scholar
  20. 20.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the IEEE HICSS, pp. 1–10. IEEE Press, New York (2000)Google Scholar
  21. 21.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of the ACM MobiCom, pp. 56–67. ACM Press, New York (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Guangxi Key Laboratory of Multimedia Communications and Network TechnologySchool of computer and electronics information, Guangxi UniversityNanningPeople’s Republic of China
  3. 3.School of Geosciences and Info-PhysicsCentral South UniversityChangshaChina
  4. 4.School of Computer Engineering and Applied MathematicsChangsha UniversityChangshaChina

Personalised recommendations