Skip to main content

Refined Weighted Random Forest and Its Application to Credit Card Fraud Detection

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11280))

Included in the following conference series:

Abstract

Random forest (RF) is widely used in many applications due to good classification performance. However, its voting mechanism assumes that all base classifiers have the same weight. In fact, it is more reasonable that some have relatively high weights while some have relatively low weights because the randomization of bootstrap sampling and attributes selecting cannot guarantee all trees have the same ability of making decision. We mainly focus on the weighted voting mechanism and then propose a novel weighted RF in this paper. Experiments on 6 public datasets illustrate that our method outperforms the RF and another weighted RF. We apply our method to credit card fraud detection and experiments also show that our method is the best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, S., Johari, R.: A new framework for credit card transactions involving mutual authentication between cardholder and merchant. In: 2011 International Conference on Communication Systems and Network Technologies, pp. 22–26. IEEE (2011)

    Google Scholar 

  2. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and evaluation of a real-time url spam filtering service. In: Security and Privacy, vol. 42, pp. 447–462. IEEE (2011)

    Google Scholar 

  3. Zhang, Y., Liu, G., Luan, W., Yan, C., Jiang, C.: An approach to class imbalance problem based on stacking and inverse random under sampling methods. In: 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6. IEEE (2018)

    Google Scholar 

  4. Bolton, R.J., Hand, D.J.: Unsupervised profiling methods for fraud detection. In: Credit Scoring and Credit Control VII, pp. 235–255 (2001)

    Google Scholar 

  5. Gmbh, Y., Co, K.G.: Global online payment methods: Full year 2016, Technical report (2016)

    Google Scholar 

  6. Seyedhossein, L., Hashemi, M.R.: Mining information from credit card time series for timelier fraud detection. In: 2010 5th International Symposium on Telecommunications (IST), pp. 619–624. IEEE (2010)

    Google Scholar 

  7. Zheng, L., Liu, G., Yan, C., Jiang, C.: Transaction fraud detection based on total order relation and behavior diversity. IEEE Trans. Comput. Soc. Syst. 99, 1–11 (2018)

    Google Scholar 

  8. Srivastava, A., Kundu, A., Sural, S., Majumdar, A.: Credit card fraud detection using hidden Markov model. IEEE Trans. Dependable Secure Comput. 5(1), 37–48 (2008)

    Article  Google Scholar 

  9. Drummond, C., Holte, R.C.: C4.5, class imbalance, and cost sensitivity: why under-sampling beats oversampling. In: Proceedings of the ICML Workshop on Learning from Imbalanced Datasets II, pp. 1–8 (2003)

    Google Scholar 

  10. Quah, J.T.S., Sriganesh, M.: Real-time credit card fraud detection using computational intelligence. Expert Syst. Appl. 35(4), 1721–1732 (2008)

    Article  Google Scholar 

  11. Kundu, A., Panigrahi, S., Sural, S., Majumdar, A.K.: Blast-ssaha hybridization for credit card fraud detection. IEEE Trans. Dependable Secure Comput. 6(4), 309–315 (2009)

    Article  Google Scholar 

  12. Xuan, S., Liu, G., Li, Z., Zheng, L., Wang, S., Jiang, C.: Random forest for credit card fraud detection. In: 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6. IEEE (2018)

    Google Scholar 

  13. Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for credit card fraud: a comparative study. Decis. Support Syst. 50(3), 602–613 (2011)

    Article  Google Scholar 

  14. Mota, G., Fernandes, J., Belo, O.: Usage signatures analysis an alternative method for preventing fraud in E-Commerce applications. In: International Conference on Data Science and Advanced Analytics, pp. 203–208. IEEE (2014)

    Google Scholar 

  15. Behdad, M., Barone, L., Bennamoun, M., French, T.: Nature-inspired techniques in the context of fraud detection. IEEE Trans. Syst. Man Cyber. Part C 42(6), 1273–1290 (2012)

    Article  Google Scholar 

  16. Bolton, R.J., Hand, D.J.: Statistical fraud detection: a review. Stat. Sci. 17(3), 235–249 (2002)

    Article  MathSciNet  Google Scholar 

  17. Chan, P.K., Fan, W., Prodromidis, A.L., Stolfo, S.J.: Distributed data mining in credit card fraud detection. IEEE Intell. Syst. Appl. 14(6), 67–74 (2002)

    Article  Google Scholar 

  18. Chen, R.C., Chen, T.S., Lin, C.C.: A new binary support vector system for increasing detection rate of credit card fraud. Int. J. Pattern Recognit. Artif. Intell. 20(02), 227–239 (2006)

    Article  Google Scholar 

  19. Mcdonald, D.W., Ackerman, M.S.: Expertise recommender:a flexible recommendation system and architecture. In: ACM Conference on Computer Supported Cooperative Work, pp. 231–240. ACM (2000)

    Google Scholar 

  20. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  Google Scholar 

  21. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  22. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  23. Quinlan, J.R.: Induction on decision tree. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  24. Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J.: Classification and regression trees. Biometrics 40(3), 358 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Albrecht, W.S., Albrecht, C., Albrecht, C.C.: Current trends in fraud and its detection. Inf. Syst. Secur. 17(1), 2–12 (2008)

    MATH  Google Scholar 

  27. Li, H.B., Wang, W., Ding, H.W., Dong, J.: Trees weighting random forest method for classifying high-dimensional noisy data. In: IEEE, International Conference on E-Business Engineering, pp. 160–163. IEEE (2011)

    Google Scholar 

  28. Zhou, Q., Zhou, H., Li, T.: Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features. Knowl. Based Syst. 95, 1–11 (2016)

    Article  Google Scholar 

  29. Harris, J.R., Grunsky, E.C.: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data. Comput. Geosci. 80, 9–25 (2015)

    Article  Google Scholar 

  30. Singh, K., Guntuku, S.C., Thakur, A., et al.: Big data analytics framework for peer-to-peer botnet detection using random forests. Inform. Sci. 278(19), 488–497 (2014)

    Article  Google Scholar 

  31. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  32. Fanelli, G., Dantone, M., Gall, J., et al.: Random forests for real time 3D face analysis. Int. J. Comput. Vis. 101(3), 437–458 (2013)

    Article  Google Scholar 

  33. Winham, S.J., Freimuth, R.R., Biernacka, J.M.: A weighted random forests approach to improve predictive performance. Stat. Anal. Data Min. ASA Data Sci. J. 6(6), 496–505 (2013)

    Article  MathSciNet  Google Scholar 

  34. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  35. UCI Homepage. http://archive.ics.uci.edu/ml/datasets.html

  36. Scikit-learn Homepage. http://scikit-learn.org/stable/

Download references

Acknowledgments

Authors would like to thank reviewers for their helpful comments, and also thank Professor Changjun Jiang who provides authors a lot of assistance on data and experiments. This paper is supported in part by the National Natural Science Foundation of China under grand no. 61572360 and in part by the Shanghai Shuguang Program under grant no. 15SG18. Corresponding author is G.J. Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xuan, S., Liu, G., Li, Z. (2018). Refined Weighted Random Forest and Its Application to Credit Card Fraud Detection. In: Chen, X., Sen, A., Li, W., Thai, M. (eds) Computational Data and Social Networks. CSoNet 2018. Lecture Notes in Computer Science(), vol 11280. Springer, Cham. https://doi.org/10.1007/978-3-030-04648-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04648-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04647-7

  • Online ISBN: 978-3-030-04648-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics